PLAN ENERGETICO NACIONAL

1997 - 2010

Autosuficiencia Energética Sostenible
La energía es un factor básico para las perspectivas de desarrollo de Colombia, como ingrediente en el proceso productivo, como fuente de recursos fiscales de inversión en capital social y como un sector atractivo para la expansión de la participación privada en el desarrollo de infraestructura y en el suministro de servicios públicos.

En el proceso de modernización de la economía, el Estado Colombiano ha concentrado su esfuerzo reciente en el papel de orientador y regulador, pero con especial atención a los aspectos sociales del desarrollo. En lo relacionado con el sector energético, este papel incluye la función esencial de elaborar los planes de desarrollo integral y por subsectores, que sirvan de referencia para la actividad de los actores públicos y privados encargados del aprovechamiento de los recursos energéticos y del oportuno y adecuado suministro de la energía que demanda el crecimiento económico y el mejoramiento del bienestar de todos los colombianos.

Como desarrollo de las funciones de planeación indicativa, el Plan Energético Nacional 1997-2010, elaborado por la Unidad de Planeación Minero Energética con el apoyo de las entidades del sector energético, es un documento que se orienta al suministro de información de referencia tanto a las empresas involucradas en el aprovechamiento y suministro de la energía, como al público en general.

El objetivo central de este Plan es la Autosuficiencia Energética Sostenible, y refleja la política de mantener al sector energético como una base fundamental de la economía colombiana hacia el futuro. El fortalecimiento de la exploración, producción y exportación de petróleo y carbón, bien en forma de materias primas o como productos procesados, constituye actualmente una de las principales alternativas para recuperar el crecimiento económico en el corto y mediano plazo y para suministrar los recursos de inversión que permitan la recuperación de otros sectores y la consolidación de un desarrollo sostenido y equitativo en el largo plazo.

Colombia cuenta con un variado potencial de recursos energéticos, cuyo aprovechamiento requiere, especialmente cuando se trata de petróleo, de un costoso, riesgoso y continuo esfuerzo de inversión, para lo cual es indispensable el concurso del capital privado, particularmente el de origen externo. Conviene, por lo tanto, que el país actualice y mantenga las condiciones adecuadas en cuanto a marco fiscal y de contratación, de manera que se garantice la competitividad internacional y los flujos de inversión en la búsqueda y desarrollo de nuevas reservas de recurso fósiles.

El Plan es entonces no solo una orientación, sino también un llamado al trabajo conjunto y permanente del sector estatal y privado para alcanzar los objetivos fundamentales de aprovechamiento de los recursos y suministro oportuno de energía para un desarrollo ambientalmente sostenible y socialmente equitativo.

RODRIGO VILLAMIZÁN ALVAREZ
Ministro de Minas y Energía
Primera parte: El Diagnóstico

Situación y Perspectivas de la Energía

1. Entorno Internacional de la Energía .. 7
 • Perspectivas Económicas ... 9
 • Perspectivas Energéticas ... 9
 • Consideraciones Medio Ambientales 12
 • Cambios en Fuentes de Financiación 13

2. Economía y Energía Nacional ... 15
 • Panorama Económico .. 17
 • Energía y Crecimiento Económico 17
 • Estructura del Consumo de Energía 17
 • Estructura de la Oferta de Energía 22

3. Perspectivas Energéticas 1997-2010 25
 • Aspectos Metodológicos.. 27
 • Escenarios de Proyección 27
 • Proyecciones de Demanda 28
 • Incidencia sobre los recursos no renovables 35

Segunda parte: La Estrategia Energética

4. Estrategia Energética .. 41

5. Incremento de las Exportaciones de Energía 44
 • Aumento de la Competitividad en Hidrocarburos 46
 • Aumento de la Inversión Privada en Carbón 48
 • Interconexión con Otros Países 49
 • Otras Acciones .. 50
6. Gestión de la Demanda y Uso Racional de Energía .. 51
 • Política de Precios y Subsidios de la Energía .. 53
 • Sustitución de Energéticos ... 53
 • Gestión de la Demanda de Energía .. 55
 • Acciones de Apoyo ... 59

7. Abastecimiento Pleno y Eficiente de Energéticos ... 61
 • Petróleo .. 63
 • Gas Natural ... 65
 • Carbón Mineral .. 69
 • Energía Eléctrica ... 71
 • Energías alternativas ... 75

8. Energización Rural .. 77
 • Abastecimiento Eficiente y Diversificado .. 80
 • Evaluación de la Demanda y Oferta Energética 82
 • Fortalecimiento Institucional .. 82
 • Esquemas Financieros para la Energización Rural 83

9. Gestión Ambiental Energética .. 85
 • Políticas Ambiental y Energética ... 87
 • Caracterización Ambiental del Sector Energético 88
 • El Manejo Ambiental Energético .. 90
 • Estrategia de Gestión Ambiental ... 90

10. Investigación y Desarrollo en Energía ... 95
 • Fortalecimiento de la Capacidad Institucional ... 97
 • Formación de Recursos Humanos ... 98
 • Creación y Consolidación de Centros de Investigación 98
 • Información y Comunicación .. 99
 • Areas Prioritarias de Investigación .. 99

11. Aspectos Institucionales de la Energía ... 103
 • Nuevos Ajustes en la Estructura Institucional 105

Anexos
 • Flujo Energético 1996 .. 113
 • Balance Energético .. 114
 • Análisis de Necesidades de Exploración ... 116
 • Mapas .. 117
 • Siglas y abreviaturas ... 123
 • Unidades de Medida ... 126
INTRODUCCION Y RESUMEN

La presente revisión del PEN consta de dos partes, un diagnóstico y una estrategia. En el diagnóstico se analizan la evolución y los cambios previstos en los entornos internacional y nacional para establecer la forma como el sector energético se ve afectado y responde a estos condicionantes. En la segunda parte se revisa la estrategia para incorporar los ajustes requeridos de acuerdo con los cambios en el entorno, las perspectivas de demanda y los lineamientos de política sectorial y nacional.

El diagnóstico

En lo internacional

El proceso de transformación del sistema económico mundial contribuirá a fortalecer las acciones de liberalización, desregulación y privatización de las economías de los países en desarrollo. Gran parte de la dinámica de crecimiento va a estar sustentada entonces en la inversión privada y en un ambiente de competencia global.

La formación de bloques regionales abre perspectivas favorables para nuevas formas de cooperación y desarrollo de recursos. En el caso del hemisferio americano y con referencia al sector energético, se tiene un importante potencial para mejorar la autosuficiencia a partir de suministros regionales, especialmente a partir de recursos fósiles. Esta expectativa es importante para Colombia que cuenta con reservas conocidas y potenciales importantes en estos recursos.

Las tendencias esperadas en los recursos fósiles son más favorables para los países que puedan contar con reservas y producción creciente de petróleo y de gas natural. No obstante, el desarrollo del carbón mantiene expectativas favorables, pero con importantes requerimientos en cuanto a eficiencia y calidad en la producción que garanticen el posicionamiento en un mercado cada vez más competido.

En lo ambiental, el crecimiento previsto en el consumo de combustibles fósiles conlleva también al incremento en el 2010 en los gases de invernadero, a niveles entre 35% y 49% superiores a los de 1990. Se prevé que la mayor parte de este incremento se originará en los países en desarrollo y particularmente en la China.

En lo nacional

Dentro del crecimiento del PIB, el sector más dinámico en los últimos años ha sido el sector minero energético, que aumentó 11.5% en 1996. Esta dinámica de crecimiento se ha originado básicamente en los incrementos de inversiones en explotación y desarrollo de petróleo y carbón desde fines de los años 70, los cuales han resultado en correspondientes aumentos en producción de petróleo, gas natural y carbón. En este período el país no solo recuperó la autosuficiencia energética, sino que se convirtió en un actor importante en el mercado mundial de petróleo y de carbón.

El fortalecimiento de la producción y exportación de petróleo y carbón, como materias primas o productos procesados, surge también como alternativa para mantener el crecimiento económico en el corto y mediano plazo y para suministrar los recursos de inversión que garanticen la recupercación de otros sectores y la diversificación de la economía para un desarrollo acelerado, sostenido y equitativo en el mediano y largo plazo.

De otra parte, el consumo final de energía está asociado con el nivel y crecimiento de la actividad económica, con una relación energía-PIB cercano a la unidad. Entre 1975 y 1996 el consumo de energía creció 3.6% anual promedio, en comparación con 4.1% anual del PIB.

Así entonces, para el caso de Colombia, el sector de la energía tiene hoy en día un doble carácter estratégico, tanto desde el punto de vista de las expectativas de crecimiento económico, como del abastecimiento de las demandas intermedias y finales de energía que se requieren para mantener y consolidar dicho crecimiento y mejorar los niveles de bienestar de toda la población.

En la evolución del consumo final de energía se tiene una participación mayoritaria de los derivados del petróleo, la electricidad y la biomasa, pero el recurso de más acelerado

crecimiento reciente en el consumo ha sido el gas natural. El consumo de energía se concentra en los sectores transporte, industrial y residencial. El sector de más crecimiento es el industrial.

Perspectivas

El análisis de los requerimientos futuros de energía muestra la continuidad de la situación actual de alta dependencia en el petróleo. En el escenario de base, que corresponde a la trayectoria energética del país si se mantienen las tendencias y políticas actuales, de manera global la demanda final de energía (sin considerar la leña), crecerá a una media anual del 3.7% en el periodo 1997-2010. Este crecimiento, que estaría cerca de un punto por debajo del crecimiento esperado del PIB (4.6%), estará liderado por el gas natural, con una media anual del 6.7%, la electricidad 4.9%, los derivados del petróleo 3.5% y el carbón 2.7%. En el año 2010, más del 60% de las necesidades de energía del país corresponderán a productos del petróleo y al gas natural. Colombia dispone de un variado potencial de recursos energéticos, el cual es suficiente, no solo para atender las necesidades internas de energía, sino para consolidar al país como exportador de carbón y con una política agresiva de exploración, también de petróleo.

La sustentabilidad de esta estrategia exportadora está ligada a la adecuada utilización e inversión de la renta de estos recursos en el desarrollo económico y social que garantice la solidez estructural de la economía en el largo plazo. De otra parte, el aprovechamiento de este potencial, especialmente en el caso del petróleo, requiere, como se ha visto históricamente, de un costoso, riesgoso y continuo esfuerzo de inversión en explotación y desarrollo, para lo cual es fundamental el concurso de la inversión privada, particularmente la de origen externo.

El potencial energético de Colombia está aún por desarrollar. Entre los recursos fósiles, las reservas probadas de petróleo eran a finales de 1996 2800 millones de barriles, con una relación reservas/producción equivalente a 12 años. Estos volúmenes son pequeños si se comparan con las de otros países exportadores de petróleo. Las reservas probadas de gas natural eran 7700 Gpc, equivalentes a 46 años a los niveles actuales de producción. Colombia cuenta con las mayores reservas de carbón en Latinoamérica, 6749 Mt de reservas medidas, equivalentes a 220 años de producción.

Las demandas interna y de exportación ejercen sobre los recursos no renovables presiones referentes a su agotamiento en un corto plazo. Esta afirmación es especialmente válida en nuestro país para el petróleo y el gas natural.

En el caso del petróleo y para el escenario base, el país será autosuficiente en suministro de crudo hasta el año 2004 cuando, de no contar con nuevos descubrimientos de reservas, se haría necesaria la importación, no solo de gasolina, sino también crecientes volúmenes de crudo, para atender la demanda interna.

Para el gas natural, la creciente demanda por parte de los consumidores finales y los centros de transformación energética (refinerías y generación eléctrica), producirán un rápido deterioro de la relación Reservas/Producción, hasta el punto que en el año 2010, esta será de tan sólo 10 años.

Así entonces, a partir del año 2005 el país sería altamente dependiente de suministros externos para la satisfacción de las necesidades de hidrocarburos, por lo cual, para el logro de una estrategia de autosuficiencia sostenible, se requiere establecer políticas adecuadas y agresivas para incentivar la explotación de hidrocarburos.

Estrategias Energéticas

La principal estrategia energética que se propone en la presente versión del Plan Energético Nacional se orienta a incrementar los volúmenes de reservas de hidrocarburos y a contar en el futuro con los niveles de producción de petróleo, de gas natural y de carbón que garanticen no solo la autosuficiencia energética, sino el creciente aporte del sector energético al desarrollo económico del país y a la consolidación de Colombia como gran exportador de energía, dentro de un contexto de sostenibilidad ambiental y económica en el largo plazo.

Para garantizar en el mediano y largo plazo la consolidación de Colombia como exportador neto de energía se considera indispensable contar con el aumento en las reservas y producción de hidrocarburos, el desarrollo de nuevos proyectos de exportación de carbón y el desarrollo de proyectos de transformación industrial, como refinación y petroquímica. De otra parte y por tratarse de recursos no renovables, es conveniente también que el país capte e invierta adecuadamente, en el desarrollo del capital social, en infraestructura y en otros sectores, la mayor participación posible de las rentas generadas en la explotación de estos recursos. Este es...
el verdadero sentido y la razón de ser de la estrategia de autosuficiencia económica sostenible que se propone en el PEN.

En todos los casos es fundamental contar con el marco adecuado de estímulo a la inversión privada, lo cual comprende las condiciones internas de contratación, regulación y precios, las condiciones macroeconómicas y los aspectos cambiarios y fiscales, así como la situación de los mercados internacionales para esa inversión, en particular en América Latina. Estos factores determinan la competitividad con otros países y el portafolio de inversiones en Colombia.

El marco de contratación petrolera, que resultó tan atractivo en las condiciones de la industria en los años 70 y 80, gradualmente fue perdiendo competitividad en comparación con otras regiones del mundo con potencial en hidrocarburos. Para cumplir las metas de aumentos de reservas, el MME y ECOPETROL analizan nuevas modificaciones para futuros contratos y los incentivos tributarios que permitan conseguir competitividad para la inversión privada e incrementar la participación en yacimientos pequeños. Para yacimientos grandes, las tasas de rentabilidad obtenidas en Colombia se sitúan en niveles competitivos.

La situación geográfica de Colombia, cerca a los mercados de Europa, EEUU, Brasil y Chile y la localización de las reservas de carbón cerca de la Costa Caribe, son los principales determinantes de las posibilidades de exportación de carbón. Para superar la principal limitante de la exportación de carbón, se vienen adelantando acciones específicas para disponer de infraestructura de transporte y embarque de carbón por la Costa Atlántica, Venezuela y la Guajira.

La Gestión Eficiente de la Demanda y el Uso Racional de la Energía (URE) constituyen estrategias básicas para garantizar la satisfacción de las necesidades energéticas mediante el uso óptimo de las fuentes energéticas. Para este efecto, en el PEN se proponen mecanismos de política y de orientación del mercado e incentivos a la innovación tecnológica, en aspectos de precios, sustitución y gestión de la demanda de energía. La estrategia URE fortalece la sostenibilidad en forma equivalente a un recurso adicional.

Otra de las estrategias del PEN se refiere a lograr un adecuado aprovechamiento de recursos y el abastecimiento pleno y eficiente de las necesidades nacionales de energía, a partir de la utilización óptima del potencial energético. Para el desarrollo de esta estrategia, además del fomento a la exploración de hidrocarburos que se mencionó en aparte anterior, se requiere también el mejoramiento de la infraestructura de abastecimiento acorde con los requerimientos y la diversidad deseada, la reducción de la vulnerabilidad del sistema de producción y suministro, la participación creciente del sector privado y el desarrollo de mercados de libre competencia en el suministro de electricidad.

La energía es un elemento básico para los procesos de desarrollo rural del país, pero se requieren soluciones integrales de las necesidades. El PEN propone el desarrollo de un Sistema Interinstitucional de Gestión de la energización rural, el abastecimiento diversificado y eficiente de recursos energéticos y el diseño e implantación de esquemas financieros para energización rural. Como acciones específicas el PEN propone la implantación de programas de sustitución de leña comercial por briquetas de carbón y GLP, el desarrollo de Pequeñas Centrales Hidroeléctricas y programas piloto para aplicación de fuentes alternativas.

Para el logro del objetivo de contribuir al Desarrollo Humano Sostenible, es fundamental la debida consideración a las interacciones energías-medio ambiente-economía-sociedad, para establecer los impactos ambientales a lo largo de la cadena energética y determinar acciones y correctivos orientados a compensar los efectos desfavorables y potenciar los positivos. La conservación y el mejoramiento de la calidad ambiental en todas las instancias decisorias, procesos productivos e inversiones futuras del sector es uno de los objetivos básicos de la estrategia energética integral adoptada por el País.

Finalmente conviene mencionar dos estrategias instrumentales complementarias. En el PEN se propone la definición de mecanismos para incrementar la capacidad y productividad científica y tecnológica de soporte del sector energético. El marco institucional es un elemento fundamental para el aprovechamiento eficiente de los recursos energéticos, el uso racional de la energía y la formulación y puesta en práctica de políticas integrales para el sector energético.
Primera parte:

Situación y Perspectivas de la Energía

1. Entorno Internacional de la Energía

2. Economía y Energía Nacional

3. Perspectivas Energéticas 1997 - 2010
Entorno Internacional de la Energía
ENTORNO INTERNACIONAL

PERSPECTIVAS ECONOMICAS

En el ámbito internacional se prevén escenarios de moderado crecimiento de los países industrializados y de mercado dinamismo de las regiones en desarrollo, particularmente en el Asia. También se anticipan avances hacia la globalización de la economía, formación de bloques regionales, revolución tecnológico - informática, internacionalización de problemas ambientales y una mayor presencia de agentes privados y de fuerzas del mercado en diferentes cadenas productivas a nivel mundial.

Este proceso de transformación del sistema económico mundial contribuirá a fortalecer las acciones de liberalización, desregulación y privatización de las economías de los países en desarrollo, la ex-Unión Soviética y el oriente de Europa, como estrategias de apertura económica para la inserción en el nuevo orden internacional. Sin embargo, para los países en desarrollo queda aún por definir el problema de las desigualdades sociales, que exigirá ajustes a los modelos de desarrollo económico planteados.

PERSPECTIVAS ENERGETICAS

El panorama energético mundial muestra que para atender la demanda prevista existe una buena provisión de energéticos. Durante la última década, el consumo ha tenido un patrón de crecimiento sostenido, mostrando una estrecha relación con el crecimiento del Producto Interno Bruto (PIB) de cada país. En el gráfico 1.1 se muestra la composición actual del consumo de energía, el cual está concentrado en los combustibles fósiles.

Gráfico 1.1

En el largo plazo se prevé un debilitamiento de la tasa de crecimiento global de la demanda, la cual ha sido estimada por la IEA\(^1\) en el rango 1.7 a 2.1% para el período 1997-2010. El mayor crecimiento de la demanda de energía primaria se va a dar en países por fuera de la OCDE\(^2\). De hecho, en el largo plazo se espera que la participación en

\(^1\) IEA: International Energy Agency: Agencia que desarrolla el programa internacional de energía de la OCDE.

el consumo de energía de países miembros de la OCDE decreceza y aumente la de las naciones en desarrollo, especialmente China, India y otras economías dinámicas del Sudeste Asiático.

Recuadro 1.1
CAMBIOS EN EL ENTORNO INTERNACIONAL

En la Economía:
- Mayor crecimiento en países en desarrollo
- Globalización y liberalización
- Apertura de mercados
- Consolidación de bloques regionales
- Revolución científico-tecnológica- informática
- Precarización por el medio ambiente
- Mayor participación del sector privado

En la Energía:
- Crecimiento estable y concentrado en países en desarrollo
- Reducción de la intensidad energética
- Aumento de emisiones contaminantes
- Autoabastecimiento por bloques
- Creciente participación del gas natural
- Aumenta participación de mercados de capital en financiación de inversiones

Las tendencias de evolución del entorno energético a nivel mundial parecen estar marcadas por el aumento de la participación del gas, la continuidad de la contribución del petróleo y el carbón, una baja contribución de la energía nuclear y un mayor uso de fuentes renovables. Por otra parte se espera un aumento de los niveles de emisiones contaminantes asociadas con la actividad energética mundial. Otros elementos relevantes están relacionados con la seguridad en el abastecimiento al interior de bloques económicos y la expectativa de estabilidad política en regiones que concentran las reservas de fuentes convencionales.

Las necesidades de producción e infraestructura suficiente para el abastecimiento de energía, conllevarán importantes requerimientos de inversión. Ello significa que habrá de producirse fuerte competencia por recursos para invertir en el sector energético.

Petróleo

A comienzos de 1997 se contaba a nivel mundial con reservas de petróleo de un billón de barriles de petróleo y una producción de 63.4 millones de barriles día, para una relación reservas/producción de 44 años. Como se muestra en el gráfico 1.2, el 66% de las reservas están localizadas en el Oriente Medio, aunque esta región contribuye actualmente con el 30% de la producción mundial. Los países de la OPEP representan el 77% de las reservas y 41% de la producción.

Gráfico 1.2

El gráfico 1.3 se muestra la composición actual del consumo de petróleo, que se concentra en Norteamérica, Europa, Japón, China y el Sureste de Asia.

Gráfico 1.3

3 O&G Special, Dec.30 1996
En la década de los 90 se han venido presentando procesos de integración vertical de la industria petrolera internacional y de conformación de acuerdos de producción entre compañías multinacionales y países productores. La tendencia a la concentración del lado de la oferta tendrá que enfrentar la mayor competencia de otras fuentes energéticas. Los avances tecnológicos en exploración y explotación se reflejarán en crecientes suministros de bajo costo. Se prevé la evolución hacia una estructura de mercado mucho más competitiva y dinámica y con moderado crecimiento de precios.

Recuadro 1.2
TENDENCIAS DEL PETROLEO

- El sistema energético continúa basado en combustibles fósiles y dependiendo de la evolución del mercado del petróleo
- Integración vertical de las empresas petroleras
- Mayor competencia con otras fuentes
- Papel protagónico de OPEP pero en competencia con otros actores
- Moderado crecimiento de precios

Gas Natural

Las reservas mundiales de gas natural (gráfico 1.4), que han estado incrementando en los últimos diez años eran de 4945 Tpc a comienzos de 1997, con una relación reservas/producción de aproximadamente 65 años. El 63% de estas reservas está concentrado en Europa Oriental y en el Medio Oriente.

Recuadro 1.3
FUTURO DEL GAS NATURAL

- Incremento sustancial de las reservas
- Mercados regionales y desarrollos diferenciados
- Combustible fósil con más rápido crecimiento
- Crecimiento concentrado en países en desarrollo

Carbón

Las reservas mundiales de carbón se estiman en 1143 Gt y tienen duración de 220 años a los actuales niveles de producción. Este volumen representa dos tercios del total de recursos fósiles explotables y a diferencia del petróleo y el gas natural está distribuido más equitativamente por todo el orbe (gráfico 1.5).

RESERVAS MUNDIALES DE GAS NATURAL - 1997

GRAFICO 1.4

RESERVAS MUNDIALES DE CARBON - 1996

GRAFICO 1.5

El panorama mundial del carbón se caracteriza por una tendencia creciente de las exportaciones hacia los mercados de productores tradicionales, como Europa y hacia nuevos mercados en el Sudeste de Asia. Los precios del carbón son bajos y tienen poca volatilidad, lo cual unido a su disponibilidad y al desarrollo tecnológico para su explotación y uso, lo convierten en uno de los recursos con mayor confiabilidad y estabilidad en el abastecimiento.\(^5\)

Tal como se observa en el gráfico 1.6, el consumo de carbón se concentra en las áreas con mayores reservas, especialmente Asia, Norteamérica y Europa. El elemento de mayor peso en la trayectoria del mercado mundial del carbón es el crecimiento de la demanda mundial de energía, especialmente electricidad, para cuyo abastecimiento el carbón continuará siendo una fuente primaria de gran relevancia, aunque tendrá que enfrentar crecientes restricciones en lo concerniente a emisiones. Esta situación representa excelentes oportunidades para países con carbonados de buena calidad que puedan explotarlos con eficiencia, como es el caso de Colombia.

**Recuadro 1.4
PROYECCIÓN DEL CARBÓN**

- Mantiene su participación en el suministro
- Diversificación regional de los mercados y la oferta
- Confiables y estabilidad de abastecimiento
- Crecimiento de consumo concentrado en Asia y en el sector eléctrico
- Mejoras tecnológicas incidirán en la productividad y competitividad

CONSUMO MUNDIAL DE CARBÓN -1996

Gráfico 1.6

Hidroelectricidad y otros recursos renovables

Las fuentes de energía renovable constituyen una alternativa promisoria para atender las crecientes necesidades de energía y podrían jugar un papel clave en la implantación de prácticas sustentables y descentralizadas de abastecimiento energético en los países en desarrollo. No obstante, hacia el futuro se prevé que el uso de estos recursos tendrá un crecimiento moderado en todas las regiones del planeta, ya que la continuidad prevista de los actuales precios de los combustibles fósiles hace poco probable el aumento de la participación de la hidroelectricidad y otros recursos renovables en el abastecimiento energético\(^6\).

Recientemente se han tenido considerables avances en la tecnología para la reducción de costos y el uso de fuentes alternas como la eólica, cuyo costo para generación de electricidad disminuyó de US$1,00/kWh a mediados de los 70, a solo US$0.05/kWh en la actualidad\(^7\). El mayor potencial para el desarrollo de fuentes alternas, como la eólica, fotovoltaica y pequeñas hidroelectricas, se localiza en países en desarrollo, en los que, como lo demuestra la experiencia de la India, los programas e incentivos adecuados pueden llevar a un crecimiento acelerado en su uso.

CONSIDERACIONES AMBIENTALES

La preocupación fundamental a nivel mundial sobre los impactos ambientales del consumo de energía es la posibilidad de un cambio climático global ocasionado por las emisiones de CO\(_2\). Con los crecimientos que se proyectan para el consumo mundial de energía entre 1997 y 2015, se estima que las emisiones de carbono aumentarán en 3500 millones de toneladas y en el 2015 excederán en 61% los niveles que se tenían en 1990\(^8\).

En el gráfico 1.7 se presenta la proyección hecha por la EIA de Estados Unidos sobre emisiones de carbono en países industrializados y en el resto del mundo.

\(^{7}\) EIA, op. c. pag.85

\(^{8}\) EIA, op. c. pag. 4
El potencial de incremento de emisiones de gases de efecto invernadero asociado al crecimiento de los países en desarrollo ha resultado en propuestas para limitar dichas emisiones. La Convención de Naciones Unidas Sobre Cambio Climático, que recomienda esfuerzos para estabilizar la emisión de gases de invernadero a los niveles de 1990, ha sido firmada por 166 países. Uno de los mecanismos previstos para ello es la denominada Implementación Conjunta de proyectos de reducción de emisiones.

Recuadro 1.5

EXPECTATIVAS EN EL MEDIO AMBIENTE

- Preponderancia en la agenda global
- Posible cambio climático ocasionado por emisiones de CO₂
- Uso inadecuado de recursos naturales
- Impacto del crecimiento de los países en desarrollo
- Desarrollo Humano Sostenible
- Debate sobre implementación conjunta de reducción de emisiones

El cumplimiento de las restricciones ambientales globales por parte de los países en desarrollo solo puede lograrse si se plantean modelos alternativos de desarrollo que no vulneren su posibilidad de alcanzar metas de crecimiento económico, pero que contribuyan a la protección del medio ambiente.

CAMBIOS EN FUENTES DE FINANCIACIÓN

En años recientes se han producido importantes cambios en los esquemas de financiación de proyectos energéticos, particularmente a nivel de los países en desarrollo, a medida que han dejado de estar disponibles fuentes tradicionales de recursos como la banca multilateral. En particular, los cambios más marcados han sido experimentados en el subsector eléctrico donde un buen número de inversionistas privados ha sido atraído a raíz de los procesos de reestructuración y privatización puestos en marcha.

En el caso de los sectores petrolífero y de gas natural, también se están experimentando cambios. El estado ha reducido su participación en la industria y en varios países se adelantan procesos de privatización, mientras que en otros han mejorado las condiciones para la inversión extranjera. Los sectores gas natural y petrolífero se enfrentan, al igual que el sector eléctrico, al reto de conseguir los recursos de capital que permitan satisfacer la creciente demanda. Teniendo en cuenta que el papel jugado por el sector privado ha sido tradicionalmente importante en el área de hidrocarburos, el proceso de cambio de los esquemas de financiación de proyectos no será tan significativo como en el sector eléctrico.

El reto de los países en desarrollo se encuentra en su capacidad para ofrecer facilidades al inversionista, tasas de rentabilidad atractivas y nuevas formas de asignación de riesgos.
2
Economía y Energía Nacional
ECONOMIA Y ENERGIA NACIONAL

PANORAMA ECONOMICO

Colombia se ha caracterizado en el contexto latinoamericano por su estabilidad macroeconómica. La apertura de la economía ha generado nuevas oportunidades de inversión en diferentes sectores, diversificando los flujos de inversión extranjera.

El Producto Interno Bruto (PIB) tuvo un crecimiento de 5.2% en 1995 y 2.1% en 1996. Uno de los sectores más dinámicos en los últimos años ha sido el sector minero-energético, que aumentó 7.6% en 1996. Esta dinámica de crecimiento se ha originado básicamente en los incrementos de producción y exportación de petróleo y carbón.

La desaceleración reciente en el ritmo de crecimiento económico se vió reflejada en la elevación de los índices de desempleo a 12% a comienzos de 1997 y en menores ingresos fiscales, que frente a la continuidad del aumento del gasto público dio lugar a un incremento del déficit fiscal a niveles superiores al 4% del PIB en 1996. El control de la inflación, que mantiene índices cercanos al 18% anual, continúa siendo una de las prioridades de la política macroeconómica. Contando con la creciente producción de petróleo y la reactivación de los sectores agrícola e industrial, se prevé la recuperación del crecimiento económico en el mediano y largo plazo, en un contexto de estabilidad macroeconómica, disciplina fiscal y baja inflación.

ENERGIA Y CRECIMIENTO ECONOMICO

Desde finales de los años setenta, la recuperación en las inversiones en exploración y desarrollo de carbón y petróleo produjeron un incremento de las actividades minero-energéticas, de forma que se elevó su participación en la economía nacional, se recuperó la autosuficiencia energética y se generaron excedentes exportables.

La producción de petróleo se ha convertido entonces en la principal fuente de crecimiento del PIB. Junto con el gas natural y el carbón provee considerables recursos fiscales y de divisas para la economía nacional. El fortalecimiento de la producción y la exportación de petróleo y carbón surge también como una alternativa para mantener el crecimiento económico en el corto y mediano plazo y para suministrar los recursos de inversión que garanticen la recuperación de otros sectores y la diversificación de la economía para un desarrollo acelerado, sostenido y equitativo en el mediano y largo plazo.

ESTRUCTURA DEL CONSUMO DE ENERGIA

En relación con los estándares internacionales, los niveles per capita de consumo de energía en Colombia son todavía bajos e inferiores al promedio de América Latina (gráfico 2.1).

El consumo final de energía está asociado con el nivel y crecimiento de la actividad económica, con una relación energía-PIB cercana a la unidad (gráfico 2.2). Entre 1975 y 1996 el consumo de energía creció 3.6% anual promedio, en comparación con 4.1% anual del PIB.

Así entonces, para el caso de Colombia, el sector de la energía tiene hoy en día un doble carácter estratégico, bien desde el punto de vista de las expectativas de crecimiento económico como del abastecimiento de las demandas intermedias y finales de energía que se requieren para mantener y consolidar dicho crecimiento y mejorar los niveles de bienestar de toda la población.
CONSUMO PER CAPITA DE ENERGIA
EN AMERICA LATINA -1995

<table>
<thead>
<tr>
<th>País</th>
<th>1975</th>
<th>1976</th>
<th>...</th>
<th>1995</th>
</tr>
</thead>
<tbody>
<tr>
<td>LATINOAM.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>VENEZUELA</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>URUGUAY</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TRINIDAD</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PERU</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PARAGUAY</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PANAMA</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NICARAGUA</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MEXICO</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>JAMAICA</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>GUATEMALA</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>EL SALVADOR</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ECUADOR</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CHILE</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CUBA</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>COSTA RICA</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>COLOMBIA</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BRASIL</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BOLIVIA</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ARGENTINA</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Fuente: SIEE, OLADE, 1996

Gráfico 2.1

CRECIMIENTO DEL CONSUMO DE ENERGIA Y DEL PIB 1975-1996

En los gráficos 2.3 y 2.4 se presenta la evolución del consumo final de energía. Se tiene una mayoritaria participación de los derivados del petróleo, la electricidad y la biomasa. El consumo de energía se concentra en los sectores transporte, industrial y residencial.

Gráfico 2.2

Recuadro 2.2

ESTRUCTURA DEL CONSUMO DE ENERGIA

- Bajos e ineficientes niveles de consumo
- Elevado consumo de leña
- Alta relación Energía-PIB
- Consumo concentrado en los derivados de petróleo
- Crecimiento de la participación del gas natural en el consumo
- Bajo crecimiento del consumo interno de carbón
- Incremento de la participación del sector industrial
- Continuidad de participación del sector residencial en consumo de electricidad
- Excesivo consumo de electricidad para procesos de cocción y calentamiento
Composición del Consumo Final

Petróleo y sus derivados

El petróleo y sus derivados continúan siendo la principal fuente de abastecimiento de las necesidades energéticas. El consumió promedio de estos combustibles ascendió a 245266 barriles por día (Bd) en 1996, destacándose el consumo de gasolinas, de propano y del diesel (gráfico 2.5).

Para atender las necesidades de gasolina, fue necesario importar en promedio 23527 Bpd en 1996, equivalentes al 18% del consumo.

Carbón

El consumo de carbón en el país está concentrado en algunos subsectores industriales y en la generación de electricidad (gráfico 2.6). Durante 1996, se consumieron 4.8 millones de toneladas de carbón, con una disminución de 13.5% respecto a 1995, debido principalmente a la drástica reducción del consumo en el subsector eléctrico y al estancamiento del sector de la construcción.
Gas natural

En 1996 el consumo de gas natural fue de 458,6 Mpcd, con aumento de 6,4% con respecto a 1995. Como se observa en el gráfico 2.7, el principal consumidor de gas natural es el sector termoeléctrico (39%), seguido por el sector industrial (24,4%) y ECOPETROL (23,8%).

Biomasa

En cuanto se refiere a la leña, se estima que para el consumo energético en el país se destinan del orden de los 10 millones de toneladas al año. A nivel de energía primaria este volumen equivale a 43300 teracalorías y es similar al consumo de gas natural. De otra parte, en Colombia se consumen como energía cerca de 8 millones de toneladas de bagazo al año, cuya equivalencia en energía primaria es de 22500 teracalorías. El uso de biomasa como energía se concentra en el sector residencial rural y de pequeñas poblaciones, en la autogeneración de energía en el Valle del Cauca y en industrias rurales como los trapiches.

Consumo de energía por sectores económicos

Sector residencial

En Colombia, la estructura de consumo de energía en el sector residencial continúa siendo atípica, con una alta incidencia de la leña o de la electricidad, según se analice en términos de energía final o en términos de energía útil (gráfico 2.9).

1 La diferencia refleja la baja eficiencia de la leña, en comparación con otras energías finales.
El gráfico 2.10 presenta la distribución de usos finales de la energía en el sector residencial. El mayor porcentaje de energía útil consumida en el sector residencial se utiliza para la cocción de alimentos, seguida por la refrigeración, el calentamiento de agua y la iluminación.

El consumo de energía por la industria está concentrado en un número reducido de subsectores (Gráfico 2.12). La actividad industrial de mayor consumo es la de alimentos, bebidas y tabaco seguido por las industrias cementera y química.

Sector industrial

Como se observa en el gráfico 2.11, los energéticos con mayor participación en el consumo final del sector industrial son el carbón (34%) y el bagazo de la caña (22%). Por otra parte, el crudo de Castilla ha tenido una apreciable penetración en el sector industrial debido a su bajo costo. El gas natural, que ha penetrado ampliamente en la Costa Atlántica, se vislumbra como una alternativa en el interior del país para algunos usos industriales, dada sus características de combustible limpio y de fácil manejo.

El sector transporte constituye el principal consumidor de energía del país. En razón de la concentración del servicio de transporte en el modo carreter o automotor, el consumo de energía mayoritario corresponde a gasolina motor y Diesel Oil (ACPM), como se observa en el gráfico 2.13.
En estudios realizados por la UPME se ha logrado identificar que el subsector transporte particular constituye el principal consumidor de gasolina (46%), seguido por el transporte público (33%) y el de carga (14%). Para el caso del Diesel, el transporte de carga concentra el 62.3% del consumo, seguido por el transporte masivo (17.5%).

ESTRUCTURA DE LA OFERTA DE ENERGÍA

Colombia dispone de un amplio y variado potencial de recursos energéticos, el cual es suficiente, no solo para atender las necesidades internas de energía sino para consolidar al país como exportador de petróleo y carbón. No obstante, el aprovechamiento de este potencial requiere, como se ha visto históricamente de un costoso, riesgoso y continuo esfuerzo de inversión en exploración y desarrollo, para lo cual es fundamental el concurso de la inversión privada, particularmente la de origen externo.

Petróleo

Las reservas probadas de petróleo eran a finales de 1996 del orden de los 2800 millones de barriles (ver gráfico 2.14) con una relación reservas/producción equivalente a 12 años. Estos volúmenes son todavía pequeños si se comparan con otros países exportadores de petróleo.

Recuadro 2.3

ESTRUCTURA DE LA OFERTA ENERGÉTICA DEL PAÍS

- Amplio potencial de recursos, pero poco aprovechado
- Autosuficiencia energética con excepción de importaciones de gasolina
- Reservas de petróleo que permiten exportación en el corto y mediano plazo, pero que no garantizan autosuficiencia a largo plazo
- La evolución del subsector gas natural es significativa pero el mercado aún es incipiente
- Importantes reservas de carbón, como base de exportación
- Deficiencias en infraestructura de transporte y embarque de carbón
- Transición en el sector eléctrico:
 - Participación de agentes privados en generación de energía eléctrica
 - Transacciones en la bolsa de energía
- Deficiencias en infraestructura de suministro, cobertura y calidad

Gráfico 2.14

RESERVAS REMANENTES DE PETRÓLEO

3 Este total no incluye Volcanera, Floreñza y Pauto en el Páramo Noroeste

Unidad de Planificación Minera Energética UPME
En 1996 la producción promedio de petróleo fue de 626kbd de petróleo. De este volumen se consumió internamente el 48.8% y el resto fue exportado. La refinación interna de petróleo se lleva a cabo principalmente en las plantas de Barrancabermeja, con capacidad de carga de 210 kbd de crudo y la de Cartagena, con capacidad de 77 kbd. Se cuenta además con otros 10 kbd de capacidad en refinarias menores. Con la producción de estas refinarias se atendía el 82% de la demanda de gasolina motor.

Gas natural

El país cuenta con un total de 11468 Gpc de reservas, de gas natural. De esta cifra, 7673 Gpc corresponden a reservas probadas y 3745 Gpc son reservas probables. (gráfico 2.15). La producción y consumo promedio de gas natural era 459 Mpcd en 1996, que en un 70.4% correspondía a la región de la Guajira, en donde se encuentran los campos productores más importantes (Ballena, Chuchupa y Riohacha). Estos campos, junto con los de Castor, Sucre, Guajape y Ayombe, ubicados en el departamento de Sucre, abastecen el consumo de la Costa Atlántica, el cual representa el 70% del consumo total del país. En el departamento de Santander se cuenta con el 7% de las reservas y el 25% del consumo.

La producción nacional de carbón fue de 29.7 millones de toneladas en 1996, con un incremento de 15.5% respecto a 1995. El 73% de esta producción provino de la gran minería a cielo abierto para exportación, en los yacimientos de la Guajira y Cesar. El resto de producción corresponde a yacimientos de mediana y pequeña minería ubicados principalmente en Cesar, Cundinamarca, Boyacá, Antioquia, Valle del Cauca y Norte de Santander.

Energía Eléctrica

La capacidad instalada de generación del sistema interconectado nacional era a finales de 1996 de 11045 MW. La capacidad efectiva era de 10601 MW con una componente hidráulica de 8017 MW, que correspondía al 76% del total y el 24% restante de componente térmica (2584 MW). A mediados de 1997 se contaba con un total de 22 generadores, 15 de los cuales eran empresas públicas y 7 privadas. En el segundo semestre de 1997 se espera el ingreso de por lo menos 3 generadores privados más.

El Sistema de Transmisión Nacional (STN) tiene un total de 8645 km de líneas a 230 y 220 kv y 1065 km de líneas a 500 kv. El STN está conformado por dos subsistemas (Centro del país y Costa Atlántica) interconectados entre sí mediante líneas de transmisión a 500 kv. El sector eléctrico colombiano se encuentra atravesando una etapa de transición desde un esquema centralizado a uno donde se fomenta la competencia entre agentes.

Biomasa

La oferta de biomasa leñosa, particularmente en lo que a leña comercial se refiere, tiene incidencia en la deforestación, aunque las principales causas de esta última están más ligadas a la expansión de la frontera agrícola.
Perspectivas Energéticas
1997 - 2010
PERSPECTIVAS ENERGÉTICAS 1997-2010

ASPECTOS METODOLOGICOS

Mediante la utilización complementaria de modelos econométricos y analíticos, el PEN estimó la demanda a nivel de energía final, teniendo en cuenta las posibles sustituciones que pueden darse en los sectores residencial, industrial y del transporte, antes la diversificación esperada de la canasta de energéticos en Colombia.

Se formularon modelos econométricos de la demanda de energía en Colombia, en función del producto interno bruto (PIB), el valor agregado, la población, los consumos históricos y los precios de la energía. Para estimar los requerimientos futuros de energía se empleó un modelo analítico (alimentado con las proyecciones econométricas) que usa una aproximación no lineal de equilibrio general para determinar el balance de oferta y demanda de energía y que toma en cuenta, tanto los procesos y los programas o acciones encaminados a sustitución y uso eficiente de energía, como la sustitución de electricidad por gas natural y el uso de equipos eficientes.

ESCENARIOS DE PROYECCION

Debido a las características de incertidumbre asociadas con las variables explicativas de la demanda de energía, no es posible determinar una trayectoria única para la evolución de la misma y por ello se definieron escenarios contrastados de proyección que permitan enmarcar dentro de un rango factible la evolución futura de la demanda de energéticos.

En los escenarios intervienen variables de crecimiento económico, de precios y tarifas de los energéticos, sustitución de fuentes a nivel de usuario final y variables de ahorro y tecnología.

Se plantearon tres escenarios de crecimiento del PIB, dos escenarios de precios y tarifas de energéticos, un escenario de penetración de GNC en el sector transporte con dos sensibilidades sobre la velocidad de penetración del programa, un escenario de penetración de gas natural residencial con dos sensibilidades sobre la financiación del costo de instalación, dos escenarios de sustitución de leña: uno por GLP y otro por briquetas de carbón, un escenario de cambio de luminarias eficientes en el alumbrado público y un escenario de pérdidas técnicas en el sistema de transmisión eléctrica. Para estudiar alternativas de disminución de importaciones se plantearon escenarios de aumento de la capacidad de refinación.

Caso Base

El caso base fue construido mediante la rama de escenarios sombreados en la tabla 3.1 y corresponde a un escenario "no

Tabla 3.1

<table>
<thead>
<tr>
<th>DEMANDA DE ENERGÍA 1997-2010: ESCENARIOS Y CASO BASE</th>
</tr>
</thead>
<tbody>
<tr>
<td>MACROECONÓMICO</td>
</tr>
<tr>
<td>PIB CNO</td>
</tr>
<tr>
<td>1997-2000: 5.0%</td>
</tr>
<tr>
<td>2001-2010: 4.5%</td>
</tr>
<tr>
<td>PIB ALTO</td>
</tr>
<tr>
<td>1997-2000: 5.8%</td>
</tr>
<tr>
<td>2001-2010: 5.0%</td>
</tr>
<tr>
<td>PIB BAJO</td>
</tr>
<tr>
<td>1997-2000: 3.9%</td>
</tr>
<tr>
<td>2001-2010: 4.0%</td>
</tr>
<tr>
<td>TARIAS</td>
</tr>
<tr>
<td>Sustitución</td>
</tr>
<tr>
<td>Tarifa alta 92% costo</td>
</tr>
<tr>
<td>Financiación 4 años</td>
</tr>
<tr>
<td>Programa GLP nial</td>
</tr>
<tr>
<td>Programa Briquetas</td>
</tr>
<tr>
<td>TRANSPORTE</td>
</tr>
<tr>
<td>Sin programas de sustitución</td>
</tr>
<tr>
<td>SECTOR ELECTRICO</td>
</tr>
<tr>
<td>Alumbrado Público</td>
</tr>
<tr>
<td>Sin Inclusión</td>
</tr>
<tr>
<td>NUEVAS TECNOLOGÍAS</td>
</tr>
<tr>
<td>Sin inclusión</td>
</tr>
</tbody>
</table>

1. Solamente estos sectores se modelaron hasta nivel de energía útil, especialmente por falta de información sobre usos y tipo de tecnología empleada en los demás consumidores.

Unidad de Planeación Minero Energética UPME
hacer nada", con el que se encuentra la trayectoria energética del país si se mantienen las tendencias y políticas actuales.

Para todo el período de planeación, el crecimiento promedio anual del PIB es de 4.6%, y fue construido partiendo del escenario oficial del DNP 1997-2000 (mayo de 1997). A partir del año 2001 se supone una tasa de crecimiento del 4.5% anual, valor cercano al crecimiento medio histórico de largo plazo en el país. Las tasas medias de crecimiento en el caso base son:

<table>
<thead>
<tr>
<th>Años</th>
<th>1997</th>
<th>1998</th>
<th>1999</th>
<th>2000</th>
<th>2001-2010</th>
<th>Promedio</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cr. PIB</td>
<td>4.0%</td>
<td>5.8%</td>
<td>5.5%</td>
<td>4.7%</td>
<td>4.5%</td>
<td>4.64%</td>
</tr>
</tbody>
</table>

El incremento tarifario en el Sector Residencial se rige por la Ley 286 de 1996, según la cual las metas establecidas por la Ley eléctrica para los subsidios en el sector residencial se alcanzan en el año 2000. La tarifa media para el sector residencial alcanza el 86.4% del costo de referencia y la CREG permite un incremento adicional en el 2001 para cubrir los retrasos tarifarios de algunas empresas. Los incrementos reales de las tarifas en el sector residencial para el caso base son:

<table>
<thead>
<tr>
<th>Años</th>
<th>1997</th>
<th>1998</th>
<th>1999</th>
<th>2000</th>
<th>2001</th>
<th>2002-2010</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cr. Tarifas</td>
<td>1.9%</td>
<td>0.0%</td>
<td>12.3%</td>
<td>11.2%</td>
<td>5.3%</td>
<td>0.0%</td>
</tr>
</tbody>
</table>

En el caso base se permite la penetración del gas natural en los sectores residencial e industrial, en vista de que El Plan de Masificación es ya un hecho; dado que se tiene incertidumbre sobre la aceptabilidad del público debido a los costos de instalación del servicio (acometida y equipos), se diseñó la rama de escenarios mostrada en la tabla 3.1, sobre la base de la apertura de créditos. En el caso base se escogió, para la financiación de la acometida y demás costos relacionados con la instalación del gas domiciliario, como costo del crédito el valor del IPC más 4 puntos, y tiempo de financiación de 5 años.

La estrategia de expansión del sector eléctrico escogida para el caso base es la LP-1. En el corto plazo (1997-2000), se prevé la instalación de 1783 MW a gas, 150 MW a carbón y 732 MW hidráulicos. En el largo plazo (2001-2010) se instalarán adicionalmente 3607 MW a gas, 450 MW a carbón y 2531 MW hidráulicos.

Las restantes componentes del escenario base corresponden a la no iniciación de políticas o programas, según puede verse en la tabla 3.1.

Casos Alternativos

Se presentarán los resultados de demanda de energía final, para dos casos alternativos: GLP rural y GNC en el transporte. Cada uno de ellos fue construido partiendo del caso base, y permitiendo la entrada de los programas indicados en la tabla 3.1.

El Caso GLP rural permite el cubrimiento de cerca de 60000 viviendas con GLP en un lapso de 4 años, iniciándose en 1997. El escenario de penetración del Gas Natural en el sector transporte supone que el programa se inicia en 1999 y cubiere cerca de 85000 vehículos en 4 años.

Adicionalmente se presenta un caso que combina los dos anteriores, es decir sustitución de leña por GLP y penetración de gas natural vehicular (GNC).

PROYECCIONES DE DEMANDA

Resultados para el Caso Base:

Demanda de energía final.

La demanda de energía final, entendida como la suma de las ventas de los diferentes energéticos a los usuarios finales (no se tienen en cuenta las demandas de combustibles para la generación termoeléctrica), desagregadas por fuentes de energía, se presentan en el gráfico 3.1.

De manera global, la demanda final de energía (sin considerar la leña), crecerá en el caso base a una media anual del 3.69%, presentando una mayor celeridad durante la década 2000-2010 (3.8%). Para el periodo 1996-2000, se tendrá un crecimiento de sólo el 3.4%.

Este crecimiento de cerca de un punto por debajo del crecimiento del PIB (4.6%), disminuye la intensidad energética, manteniendo la tendencia de reducción observada durante los últimos años.

En el año 2010, el país estará consumiendo (sin considerar la leña) 272.8 MBEP, cerca de 110 millones más que en la ac-

3 Subsidios máximos: 50% para el estatus bajo-bajo, 40% para el estatus medio-bajo, 15% para el estatus medio-medio y 0% para los demás estratos
5 Ver Capítulo 6
6 Millones de barriles equivalentes de petróleo
tualidad. Cuando se suma la leña, el consumo parte de 194 MBEP y se incrementa hasta 310.4 MBEP

Gráfico 3.1

El gráfico 3.2 muestra además que, a pesar de existir penetración del gas natural en la canasta energética nacional y un bajo crecimiento del consumo de leña, la estructura del consumo de energía final (1996 vs 2010) no varía drásticamente, pues el carbón y los derivados mantienen su participación, la participación de la electricidad crece levemente, mientras aumenta el gas natural, como era de esperarse.

A pesar de no impulsar ninguna política, la biomasa (sumando leña y bagazo) disminuye desde el 25% hasta 19%, debido al lento crecimiento de la leña en cocción residencial rural y al bajo crecimiento del bagazo en el sector industrial.

Gráfico 3.3

Franja de proyección

El gráfico 3.3 presenta la franja de proyección de la demanda de energía final (sin leña) para el caso base, ante cambios de escenarios del PIB. Para todo el período de estudio (1996-2010) se prevé un crecimiento máximo del 4.3% anual y un mínimo del 3.2%. Los crecimientos más bajos se presentan durante el período 1996-2000 con tasa respectivas de 2.5%, 3.3% y 3.8%, mientras que para la próxima década las tasas de crecimiento de la demanda muestran una recuperación llegando a valores de 3.4%, 3.8% y 4.0% respectivamente.

Gráfico 3.4
El crecimiento esperado para las demandas de energéticos para uso final está liderado por el gas natural, con una media anual del 6.7% en todo el período, que es más acelerado entre 1996 y 2000, cuando la tasa media anual se proyecta que sea 10.6%. La demanda de electricidad crecerá a una tasa del 4.9% durante el período de proyección, pero será más baja en los primeros años, 3.6% anual desde 1996 hasta el año 2000, debido la penetración del gas natural en todos los sectores de consumo.

Sin considerar la demanda del sector eléctrico, el consumo de carbón presenta un crecimiento medio del 2.7% anual para todo el período. Cuando se incluye la demanda para generación carboeléctrica, la tasa media anual para todo el período se incrementa hasta un 3.8%.

Es necesario mencionar que en el caso base se incluyó la estrategia de generación de electricidad LP-1, para presentar la situación que se daría sin acciones gubernamentales que incentiven la generación con carbón. Uno de los efectos que posiblemente se logren es la construcción de TermoCesar, que incrementaría en 300 MW el parque de generación carboeléctrica para el caso base.

Los derivados del petróleo y los crudos pesados crecerán a un ritmo del 3.5% anual. El crecimiento medio de la demanda de gasolina (3.2% anual), es muy inferior a la tasa media histórica (superior al 4%), debido a la desilusión del parque de transporte de carga y de pasajeros urbanos.

El consumo de leña crece a una media anual del 1.71% en el caso base. La otra componente de la biomasa, el bagazo, muestra un lento crecimiento como insumo energético (0.55% anual) debido a la penetración del gas natural en la industria, así como la competencia del carbón mineral reflejada en la actualidad por las transacciones de bagazo por carbón ofrecidas por la industria papelera.

En el gráfico 3.4, se presenta la demanda de total gas natural (incluyendo la del sector eléctrico). La demanda de gas natural para generación de electricidad es el motor principal del plan de masificación del gas, no solo por su elevada participación actual y futura, sino por su sostenido crecimiento que alcanza una tasa media anual del 16.9% durante el período de estudio. En el sector residencial la penetración del gas produciría un crecimiento medio del 12.1%, mientras que en la industria se presenta un crecimiento más moderado con sólo 4.7% anual.

En el gráfico 3.5 se presenta la demanda sectorial de carbón mineral para el caso base incluyendo, además de los sectores de consumo final, la demanda de generación de electricidad. El crecimiento del consumo final es de apenas un 2.7% anual, soportado en su mayoría por el consumo industrial. Para el caso base, el incremento en el consumo de carbón en la generación de electricidad es de 6.1% anual.
El crecimiento sectorial de la demanda de energía eléctrica, que se presenta en el gráfico 3.6, muestra un buen dinamismo para el sector industrial con 6.4% anual; que puede explicar en buena parte el incremento en la participación de la electricidad en la canasta energética al 2010 (Ver gráfico 3.2).

La demanda de electricidad en el sector residencial crece al 2.9%, aunque la tasa media 1996-2000 es levemente negativa: -0.14%, debido al desplazamiento sufrido por la aparición del gas natural. El sector oficial/otros presenta la mayor tasa de crecimiento, con un 9.4%, aunque su peso relativo continúa siendo bajo. El sector comercial crece de manera muy homogénea con una media anual del 4.4%.

La composición del consumo de electricidad (Gráfico 3.7) varía de manera importante para los sectores residencial e industrial. El primero de ellos pierde participación pasando del 45% al 33%, mientras que el segundo crece desde el 32% hasta el 38%; conformándose un patrón de consumo más racional de electricidad, sin una concentración tan alta en el sector residencial.

Caso 1: Penetración de GLP en cocción rural

La penetración del gas natural en el sector residencial urbano desplazará GLP principalmente en el uso de cocción (En el caso base, la tasa de crecimiento del GLP en el período 1996-2000 es negativa -2.60%).

La aparición de posibles excedentes en la oferta de este derivado hacen viable un programa de sustitución de leña por GLP. Con los mismos supuestos del caso base, se construyó un caso en el que se permite la penetración de GLP en el sector residencial rural, cubriendo cerca de 600,000 viviendas rurales.
Cuando se incluye la demanda de leña en el caso base, la energía final muestra un crecimiento medio anual del 3.41%. La penetración del GLP rural reduce este crecimiento a tan sólo 3.3%, ya que es un energético con mucha mayor eficiencia.

La composición del consumo en el año 2010 varía respecto al caso base, según se observa en el gráfico 3.8, en especial por la reducción de la participación de la leña, que pasa de 13.3% en el caso base a tan sólo 10.8%. Los derivados aumentan su participación hasta 52.5% (51% para el caso base).

Caso 2: Penetración de Gas Natural Vehicular.

Este caso analiza las posibilidades de penetración del gas natural en el sector transporte. Partiendo del caso base, se permitió la penetración de gas natural en el transporte urbano tanto de carga como de pasajeros públicos. El programa simulado se inicia en 1999 y considera la entrada de 85000 vehículos movidos con gas natural durante un lapso de 4 años.

El crecimiento de la demanda de energía, bien sea considerando o no la leña, prácticamente no varía respecto del caso base (y la diferencia en el consumo al 2010 es menor que un millón de barriles equivalentes de petróleo), pues la eficiencia del gas natural en los vehículos es muy similar a la de la gasolina. La composición, respecto al caso base, muestra un incremento en la participación del gas natural y la respectiva disminución de los derivados, según se aprecia en el gráfico 3.10.

El programa de gas natural vehicular disminuye la contaminación atmosférica debida al parque automotor, diversifica la canasta de energéticos y utiliza la infraestructura creada para el plan de masificación del gas natural, contribuyendo a la recuperación del capital invertido.

Demanda de energía para cocción rural

En el Gráfico 3.11 se presenta la demanda de combustibles para el sector transporte -modulo carretero-, cuando se introduce el programa de gas natural vehicular.
En este escenario la demanda por derivados crece a una tasa media anual del 3.1% durante el período 1996-2010. El crecimiento de la demanda de gasolina es de apenas 2.6%, siendo menor en el período 1996-2000, con apenas el 1.9%.

El Diesel Oil crece a una media anual del 4.32%, mientras que para el GNC se obtuvo una tasa media de crecimiento del 25.7%. Específicamente en el sector transporte, el Diesel crece en promedio a una tasa media anual del 6.11% durante todo el período de planeación.

Caso 4: Penetración de Gas Natural Vehicular y GLP rural

El caso combinado de los dos escenarios de penetración, muestra para la demanda de energía final (con leña) una tasa media anual de crecimiento del 3.3%, inferior a la del caso base, indicando un aumento de la eficiencia energética en el país.

Las participaciones al 2010 se presentan en el Gráfico 3.13, en donde se aprecian reducciones para la leña y los derivados, y aumento para el gas natural.

COMPOSICION DEL CONSUMO FINAL PARA EL CASO DE PENETRACIONES DE GNC Y GLP.

En este escenario combinado, el consumo de energía final al 2010 (incluyendo la leña) alcanza el valor de 305.4 MBEP, que representa un ahorro de 5 MBEP respecto del caso base, menor nivel de impacto ambiental (el GNC tiene un factor de emisión de CO2 inferior en 20% respecto de la gasolina) tanto por la sustitución de gasolina por GNC, como por reducción de la deforestación y de emisiones por consumo de leña.
Demanda de combustibles para generación eléctrica

Adicional a las demandas de energía final, se incluye en este numeral un análisis de la variación de las demandas de carbón y gas natural para generación de electricidad. Se tomó como caso base una estrategia que corresponde a la situación que se desarrollaría si no se emprendieran acciones: En vista de los bajos costos de instalación de turbogases de ciclo abierto y de los cortos tiempos de construcción, que facilitan una rápida recuperación de la inversión, se daría una expansión apoyada principalmente en proyectos de ciclo abierto a gas y con una baja instalación de proyectos a carbón.

En el caso base, hasta el año 2010 se instalarían en total 3607 MW a gas y solamente 600 MW con base en carbón. Según simulaciones probabilísticas en los modelos de despacho, el consumo de combustibles sería, en el mismo año, de 800 Mpcd de gas, y solamente 2860 kt de carbón. El gráfico 3.14 presenta la participación en el consumo para generación a finales de 1996, según la cual existe equilibrio entre los dos energéticos. En el gráfico 3.15 se presenta la participación al 2010, que evidencia un alto incremento en la participación del gas, pasando del 48% actual a un 78%.

Sin embargo, como se ha planteado en diferentes apartes del PEN, Colombia debe diversificar el uso de la canasta de energéticos. Este objetivo también es válido para la generación eléctrica, en donde el carbón cobra una especial importancia debido entre otros aspectos, a la gran cantidad de reservas que el país posee y a la robustez que este energético brinda al sistema de generación, ya que constituye una ventaja comparativa frente a la incertidumbre del recurso hidráulico y a los problemas operativos que tiene el gas natural.

Para estudiar este problema, se tomó como escenario de expansión eléctrica una estrategia en la que se establecen políticas para incentivar el uso de carbón en la generación de electricidad.

En la estrategia LP-4, se instalarían al 2010 un total de 5019 MW a gas, 1750 MW a carbón y 2093 MW hidráulicos. Para el mismo año, los consumos de combustibles serían de 771 Mpcd de gas y de 6743 kt de carbón, permitiendo una mejor participación del mineral (41% en vez de 22%), según se muestra en el gráfico 3.15.

El escenario de la escogencia de la estrategia LP-4 lograría que la participación total del carbón se acerque al 20% en el 2010, valor propuesto por plan de desarrollo del subsector carbón para el año 2005.

1 Empleando el modelo SUPEROLADE/BID
2 Ver Capítulo 6
INCIDENCIA SOBRE LOS RECURSOS NO RENOVABLES

Las demandas interna y de exportación ejercen sobre los recursos no renovables presiones referentes a su agotamiento en un corto plazo. Esta afirmación es especialmente válida en nuestro país para el petróleo y el gas natural, ya que las reservas de carbón colombiano son las mayores de América Latina.

Petróleo

El gráfico 3.15 presenta las estimaciones de producción de petróleo crudo en el caso base, sin incluir expectativas de "Piedemonte 300", la demanda interna (compuesta por las cargas a refinerías en el caso base y la demanda industrial de crudos pesados), los excedentes para la exportación y las necesidades futuras.

Con la capacidad de refinación existente y las reservas conocidas, el país será autosuficiente en suministro de crudo hasta el año 2004 y a partir de entonces se requerirán crecientes volúmenes de crudo importado o el desarrollo de reservas provenientes de futuros descubrimientos. Puesto que no se considera ampliación de la capacidad de refinación del país, el abastecimiento de productos derivados implicará aumento de las importaciones de gasolina, hasta niveles cercanos al 50% de la demanda.

Esta perspectiva indica que a partir del año 2005 el país sería altamente dependiente de suministros externos para la satisfacción de las necesidades de hidrocarburos, por lo cual se hace necesario establecer políticas para incentivar la exploración de hidrocarburos.

Gas Natural

El escenario del caso base supone que no se impulsarán acciones de incentivos a la exploración de hidrocarburos, por tanto se asume que no se incrementarán las reservas actuales de gas natural: 7763 Gpc. En el gráfico 3.16 se presenta la producción esperada de gas natural necesaria para cubrir las necesidades futuras, y la relación reservas-producción si no se realizan nuevos desarrollos o descubrimientos.

Como puede apreciarse, la creciente demanda por parte de los consumidores finales y los centros de transformación energética (refinerías y generación eléctrica), producirán un rápido deterioro de la relación Reservas/Producción, hasta el punto que en el año 2010, esta será de tan sólo 10 años.

La perspectiva de abastecimiento de petróleo y gas natural con las reservas actuales pone de presente la necesidad de incentivar la exploración petrolera en Colombia, con el fin de mantener la condición de autosuficiencia energética.

20 ECOPETROL, Plan de Ajuste Dinámico 1996-2010, Santafé de Bogotá, 1996
21 Reservas probadas en Giga pies cúbicos (1 Gpc). Ver Capítulo 6
Segunda parte:

La Estrategia Energética

4. Estrategia Energética

5. Incremento de las Exportaciones de Energía

6. Gestión de la Demanda y Uso Racional de Energía

7. Abastecimiento Pleno y Eficiente de Energéticos

8. Energización Rural

9. Gestión Ambiental Energética

10. Investigación y Desarrollo en Energía

11. Aspectos Institucionales de la Energía
4

Estrategia energética
ESTRATEGIA ENERGETICA

La estrategia energética que se propone en la presente versión del Plan Energético Nacional se orienta a incrementar los volúmenes de reservas de hidrocarburos para contar en el futuro con los niveles de producción de petróleo, de gas natural y de carbón que garanticen no solo la continuidad de la autosuficiencia energética, sino el creciente aporte del sector energético al desarrollo económico del país y a la consolidación de Colombia como exportador de energía.

Adicionalmente, el plan se orienta a estimular acciones que contribuyan a la optimización de la asignación de recursos energéticos, para satisfacer la demanda actual y futura de energía, manteniendo en perspectiva la diversificación en el suministro, las interacciones entre subsectores y las relaciones de estos con las condiciones económicas, sociales y medioambientales que se pretenden compatibilizar en la búsqueda de un desarrollo sostenible.

Teniendo en cuenta estas directrices se tienen definidos los siguientes objetivos o estrategias específicas de desarrollo energético:

- Incremento de las exportaciones de energéticos
- Gestión eficiente de la demanda y Uso Racional de Energía
- Abastecimiento pleno y eficiente de energéticos
- Energización rural
- Gestión ambiental del sector energético
- Adecuación institucional
- Investigación y desarrollo
Incremento de las Exportaciones de Energía
INCREMENTO DE LAS EXPORTACIONES DE ENERGÍA

El sector energético ha venido adquiriendo creciente participación dentro de la canasta de exportación del país, tendencia que se espera mantener en los próximos años. El petróleo crudo, algunos de sus derivados y el carbón, son los energéticos que contribuyen en forma significativa a mejorar la balanza comercial del sector energético y que inciden en la balanza de pagos del país. Para garantizar en el mediano y largo plazo la consolidación de Colombia como exportador neto de energía se considera indispensable contar con el aumento en las reservas y producción de hidrocarburos, el desarrollo de nuevos proyectos de exportación de carbón y el desarrollo de proyectos de transformación industrial, como refinería y petroquímica. De otra parte y por tratarse de recursos no renovables, es conveniente también que el país capte e invierta adecuadamente, en el desarrollo del capital social, en infraestructura y en otros sectores, la mayor participación posible de las rentas generadas en la explotación de estos recursos. Este es el verdadero sentido y la razón de ser de la estrategia de autosuficiencia económica sostenible que se propone en el PEN.

En todos los casos es fundamental contar con el marco adecuado de estímulo a la inversión privada, lo cual comprende las condiciones internas de contratación, regulación y precios, las condiciones macroeconómicas y los aspectos cambiarios y fiscales, así como la situación de los mercados internacionales para esa inversión, en particular en América Latina. Estos factores determinan la competitividad con otros países y el portafolio de inversiones en Colombia.

Recuadro 5.1
INCREMENTO DE LAS EXPORTACIONES E INTERCAMBIOS ENERGÉTICOS

- Estímulo a la inversión privada en exploración y producción de petróleo para mantener condición de exportador neto
- Creación de alianzas estratégicas en el ámbito internacional por parte de ECOPETROL
- Modificación del contrato de asociación, estímulos tributarios y acciones para garantizar la seguridad de los inversionistas
- Estímulo a la inversión en refinería y petroquímica
- Actividad permanente de promoción internacional de oportunidades de inversión privada en exploración y producción
- Apertura y mantenimiento de mercados externos del carbón
- Infraestructura de transporte y embarque para exportación de carbón
- Análisis de mercado y divulgación de información para apoyar exportaciones de carbón
- Integración energética con países de América Latina y el Caribe
- Viabilidad de interconexiones internacionales en electricidad y gas
AUMENTO DE LA COMPETITIVIDAD EN HIDROCARBUROS

Incentivos a la actividad exploratoria

En Colombia la labor exploratoria está a cargo de ECOPETROL o de empresas que operan en contratos de asociación con la empresa estatal. De esta manera se vincula formalmente el capital privado, atrayendo tecnologías de punta y minimizando la responsabilidad que se le asigne a ECOPETROL.

Los principales indicadores de la actividad exploratoria en el país corresponden al número de pozos exploratorios y las inversiones en la búsqueda de hidrocarburos. En cuanto al primer indicador, en los últimos 10 años disminuyó considerablemente el número de pozos en razón de los mayores costos de exploración de estructuras más profundas (gráfico 5.1). Con respecto al segundo indicador, la evolución de las inversiones realizadas en la búsqueda de hidrocarburos se presenta en el gráfico 5.2. Se observa allí la reactivación del monto de inversiones en el año 1995.

A corto plazo, es decir hasta finales de siglo, se esperan niveles de inversión en exploración de 320 millones de dólares por año. La meta de ECOPETROL es perforar directamente entre 3 y 8 pozos exploratorios por año. En asociación se espera que el número de pozos perforados oscile entre 20 y 30 por año. Es claro que estas son metas mínimas de exploración y que el propósito prioritario de la política petrolera es mantener y consolidar la autosuficiencia y los niveles de exportación previstos para finales de siglo, contando para ello con la cooperación de las petroleras extranjeras, la UPME ha hecho unos estimativos globales de los requerimientos en perforación de pozos exploratorios para el periodo 1997-2000, con el fin de mantener el nivel de producción de 1.0 Mbd a partir del año 2000 (Ver cuadro anexo). El análisis muestra que se deben perforar desde ahora más de 100 pozos exploratorios por año.

El cuadro 5.1 resume los cambios que se han hecho a lo largo de la historia de la industria petrolera nacional. El marco de contratación petrolera, que resultó tan atractivo en las condiciones de la industria en los años 70 y 80, gradualmente fue perdieniendo competitividad en comparación con otras regiones del mundo con potencial en hidrocarburos.

El objetivo básico de la política petrolera es incrementar los niveles de pozos e inversiones para investigar todas las cuencas sedimentarias del país. En este sentido y como forma de atraer nuevas inversiones, en 1995 la Junta Directiva de ECOPETROL introdujo el factor R en el contrato de aso-

1 El factor R es calculado como la razón anual de los ingresos sobre los egresos acumulados, generados durante la vida del proyecto en su etapa de explotación y de exploración, con el objeto de modificar la participación del Estado en la distribución de los beneficios cuando el factor es igual o mayor a 1.
ciación, con el fin de modificar la distribución de la producción, de acuerdo con los ingresos y egresos acumulados de la asociación durante el desarrollo del contrato. Adicionalmente se estableció el reembolso de los costos de exploración en pozos secos y se puso en marcha la modalidad de contratos de riesgo compartido, asignados mediante licitación internacional de áreas seleccionadas.

El gobierno nacional ha venido adelantando una revisión de la política petrolera, mediante el análisis periódico del mercado y de las condiciones vigentes para la inversión privada en otras regiones productoras o potencialmente productoras, que compiten con Colombia en la atracción de la inversión de riesgo para la búsqueda y desarrollo de nuevas reservas de hidrocarburos. Estas revisiones han determinado ajustes en el marco fiscal, como en el caso de la eliminación del impuesto de guerra para los descubrimientos posteriores a 1996.

Como resultado se concluye la necesidad de contar con la flexibilidad suficiente para adelantar los cambios requeridos en las condiciones para nuevos contratos de asociación, que permitan garantizar los niveles de exploración y reservas adecuados en relación con la demanda interna y los niveles propuestos de exploración y exportación. Mientras que el marco de contratación actual es adecuado para cuando se trata de descubrimientos grandes, con baja probabilidad de ocurrencia, la flexibilidad se requiere para cuando se encuentran yacimientos medianos y pequeños, que son los de mayor ocurrencia y en los que la economía de la explotación está altamente afectada por el nivel de la participación estatal. Conviene anotar que una ventaja de la política de promoción de la exploración y desarrollo de campos pequeños es la de generar y fortalecer una industria privada petrolera local.

Cuadro 5.1

Cambiios en las condiciones de contratación petrolera

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Tipo de contrato</td>
<td>Concesiones, Aportes</td>
<td>Asociación con la empresa oficial ECOPETROL</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Riesgo exploratorio</td>
<td>Concesionario, Posibilidad de recuperación con exención tributaria. Entre 7% y 14% según época y región</td>
<td>20%</td>
<td>20%</td>
<td>Asociado y Riesgo compartido 20%</td>
</tr>
<tr>
<td>Regalías, contraprestaciones</td>
<td>Asociado/ ECOPETROL</td>
<td>50/50 Asociada/ ECOPETROL según producción, acumulada</td>
<td>50—>30/50—>70 Asociada/ ECOPETROL según recuperación de inversiones (factor 'r')</td>
<td></td>
</tr>
<tr>
<td>Distrib. producto después de regalía, Asociada/ Empresa del Estado</td>
<td>No aplicable</td>
<td>50/50 Asociada/ ECOPETROL según producción, acumulada</td>
<td>50—>25/50—>75 Asociada/ ECOPETROL según recuperación de inversiones (factor 'r')</td>
<td></td>
</tr>
<tr>
<td>Duración contrato</td>
<td>Entre 25 y 50 años según época y región.</td>
<td>Máximo 28 años</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Precio para venta interna</td>
<td>Controlado, según costo de producción.</td>
<td>Precio de importación hasta 1986</td>
<td>Precio de Exportación</td>
<td>Precio de Exportación</td>
</tr>
<tr>
<td>Restricciones</td>
<td>Atención prioritaria de la demanda interna</td>
<td>Amortización acelerada de Inversión exploratoria. Impuesto de Rentas.</td>
<td>Impuesto de Guerra eliminado para descubrimientos posteriores a 1996</td>
<td></td>
</tr>
<tr>
<td>Marco Tributario</td>
<td>Deducción agotamiento</td>
<td>Precio de Exportación después de 1986</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Marco cambiario</td>
<td>Libre disponibilidad del 75 % del valor de las ventas internas o externas Diferencial cambiario (1961-74)</td>
<td>Libre disponibilidad del valor de las ventas</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Como complemento a las modificaciones en la contratación, el gobierno de Colombia, estudia la adopción de acciones adicionales, de acuerdo con la necesidad de atraer adecuados niveles de inversión. Se pretende implantar una estructura impositiva más estable y equitativa para los inversionistas. Por otra parte, se estudia la creación de un Fondo Petrolero para la Seguridad con el auspicio de ECOPETROL y la contribución proporcional de las empresas del sector. El propósito del fondo es garantizar la seguridad de las compañías del sector privado en sus operaciones en el territorio nacional.

Se estudian, asimismo, nuevas normas para la explotación de yacimientos pequeños. Se podría implantar para ellos un procedimiento licitatorio que permitiera la explotación de proyectos pequeños que no serían rentables en otras condiciones.

Promoción internacional de áreas para exploración.

Teniendo en cuenta la necesidad de establecer canales de comunicación directos con los potenciales inversionistas y de mantener una actitud proactiva en la consecución de nuevos inversionistas, se ha establecido un plan de promoción de oportunidades de inversión privada en explotación y producción por parte de ECOPETROL, el cual deberá realizarse como una actividad permanente.

La estrategia de promoción consiste en la presentación del país, su potencial petrolero (descubrimientos, prospectividad de áreas, potencial de hallazgos, portafolio de proyectos), las bondades y oportunidades de inversión (contrato de asociación, otras modalidades) y proyectos exploratorios concretos. Se mantendrá, asimismo, un esquema de seguimiento y actualización de los contactos realizados.

Exploración en cuencas nuevas o frías

El cubrimiento exploratorio de algunas de las cuencas sedimentarias del país es muy bajo. En ellas el nivel de incertidumbre y riesgo es mayor porque hay poca información y la rentabilidad esperada es, en general, menor con respecto a cuencas más exploradas. Para que el país pueda mantenerse como exportador neto de hidrocarburos se requiere que la actividad exploratoria se traslade gradualmente hacia las cuencas nuevas.

ECOPETROL diseñará los mecanismos para estimular la participación de las compañías petroleras en las cuencas inactivas o "frías". Por este fin podría emplearse la convocatoria a rondas de licitación para promover dichas cuencas.

AUMENTO DE LA INVERSIÓN PRIVADA EN CARBÓN

Teniendo en cuenta los lineamientos de política, en el sentido de que nuevos proyectos de explotación de carbones no deben comprometer recursos fiscales ni la capacidad de endeudamiento del Estado, se ha decidido estimular la participación de la inversión privada, nacional o extranjera, en carbón mediante acciones orientadas a lograr la apertura y el mantenimiento de nuevos mercados internacionales y el mejoramiento de la información. Las líneas de acción planteadas para el logro de este objetivo son:

Apertura y mantenimiento de mercados externos

La ubicación geográfica e infraestructura de exportación de yacimientos y proyectos de desarrollo del carbón colombiano determinan que lo más probable es que las exportaciones colombianas continúen orientándose al continente europeo, que es su mercado natural, desplazando, a la producción local costosa e importaciones europeas desde Sur África (ver recuadro 5.2).

1. ECOPETROL. Plan de promoción de Oportunidades E&P. Documento Ejecutivo, Santafé de Bogotá, Marzo 1996.

Recuadro 5.2

UBICACIÓN DE COLOMBIA EN EL MERCADO INTERNACIONAL DE CARBÓN

La situación geográfica de Colombia, cerca a los mercados de Europa, EEUU, Brasil y Chile y la localización de las reservas de carbón cerca de la Costa Caribe, son los principales determinantes de las posibilidades de exportación de carbón. Actualmente son pocas las oportunidades para acceder al creciente mercado asiático, en razón de los mayores costos de transporte y las limitaciones del Canal de Panamá para el paso de barcos de gran tamaño; por lo que se requiere estudiar la viabilidad del desarrollo de infraestructura hacia el Pacífico. En países europeos, como es el caso de Inglaterra, el carbón colombiano representa más del 50% de las importaciones de este energético. Algo similar ocurre en EEUU.
Para conservar y mejorar la renta de ubicación se requerirá que las explotaciones colombianas logren y mantengan bajos costos de producción. En este aspecto la minería a cielo abierto de las explotaciones colombianas representa un punto a favor, particularmente para el suministro o producción incremental. Otra estrategia requerida consiste en buscar la firma de contratos a largo plazo con grandes consumidores, como son las empresas independientes de generación eléctrica, en los que además de asegurar un comprador, se tiene también una protección contra los cambios en el precio del carbón del mercado abierto.

Un elemento que incide notablemente en la competitividad del carbón colombiano en el mercado internacional (y que no depende directamente del sector de energía sino del Ministerio de Transporte y de la iniciativa empresarial), es la infraestructura de transporte y embarque. Para superar esta limitante en manera que sea posible disminuir costos y competir eficientemente en los mercados externos, se vienen adelantando acciones específicas para disponer de infraestructura de transporte y embarque de carbón por la Costa Atlántica, Venezuela, la Guajira y hacia el centro y occidente del país. Así mismo, se requiere analizar la viabilidad técnica y económica de desarrollar una infraestructura que permita acceder al mercado de la región Asia-Pacífico, en donde el carbón Colombiano puede resultar atractivo gracias a su alta calidad.

Recuadro 5.3

INFRAESTRUCTURA DE TRANSPORTE Y PUERTOS Y POTENCIAL DE EXPORTACION DE CARBON

Siguiendo los lineamientos del Plan Nacional de Desarrollo, se presentó y se aprobó en el CONPES el documento sobre Estrategia para el desarrollo de un puerto carbonífero integrado en la Costa Caribe para los carbones del Cesar, Córdoba y el interior del país, en el cual se plantea la construcción de un terminal marítimo carbonífero de gran calado y las obras complementarias requeridas en cuanto a ferrocarril, carretera y rio. El proyecto será adelantado por el sector privado con el apoyo del Estado, con las siguientes etapas:

- Elaboración del estudio de factibilidad
- Promoción del proyecto
- Construcción del terminal

El sector empresarial del carbón conformó a finales de 1995 la sociedad PROPUESTA S.A., la cual firmó con ECOCARBON un convenio para el estudio de factibilidad del puerto. Adicionalmente FERROVIAS adelanta la rehabilitación y ampliación del corredor férreo La Loma-Santa Marta.

Fuente: ECOCARBON, Plan de Desarrollo del Subsector Carbón 1997-2005

Mejora en información de yacimientos de carbón con potencial de exportación

Puesto que el objetivo es incentivar la participación de inversionistas privados, es necesario tener información adecuada sobre monto de reservas, características básicas del carbón y opciones de explotación y transporte de aquellos yacimientos con potencial para la exportación. Dentro del Plan de Desarrollo del Subsector Carbón, elaborado por ECOCARBON (en el futuro MINERCOL), se tiene la actividad de inventario de reservas, cuyo objetivo es mejorar el conocimiento geológico de por lo menos el 60% de aquellas zonas del país que tienen posibilidades desde el punto de vista de reservas, mercado y disponibilidad de infraestructura, con el fin de mantener actualizado un portafolio de proyectos para contratar.

3. ECOCARBON, op. cit. pg 72
4. Integrado por Colombiana, México y Venezuela

INTERCONEXION CON OTROS PAISES

El PEN considera muy relevante gestionar acciones para concretar proyectos que permitan la integración y creación de mercados energéticos con otros países. En el marco del grupo de los tres (G-3)1, Colombia hace parte de varios grupos de trabajo que examinan las posibilidades de integración energética entre los países miembros. En la actualidad se cuenta con tres líneas de interconexión entre Colombia y Venezuela, y se tiene proyectado construir líneas adicionales que permitan fortalecer la integración con Venezuela y a largo plazo con México, a través de Centroamérica.
También se adelanta el desarrollo de una interconexión a 138 kV con el Ecuador, lo cual permitirá exportar energía eléctrica a este vecino país. Conviene iniciar también los estudios tendientes a evaluar la posibilidad de conexión en gas a más largo plazo.

OTRAS ACCIONES

El PEN reconoce la necesidad de formular nuevos modelos que permitan al mercado latinoamericano de energía estar presente en los desarrollos de otros hemisferios adoptando herramientas como la gerencia de manejo de riesgo y las alianzas estratégicas. Teniendo en cuenta la importancia de crear equipos de trabajo internacionales con respecto al petróleo, dado el carácter de recurso globalizado que tiene, en el seno de ARPEL se creó recientemente el Comité de Integración Regional y de Oportunidades de Negocios Petroleros, del que hace parte ECOPETROL.

Por otra parte, se ha planteado la posibilidad de que Colombia venda gas natural y propano a Ecuador, país que presenta déficits para atender sus requerimientos locales. El suministro podría efectuarse desde el occidente colombiano. Es conveniente que la UPME y ECOPETROL evalúen la factibilidad técnica y económica de exportar estos hidrocarburos a Ecuador y cuantifiquen el tamaño potencial de este mercado.

Conviene, asimismo, continuar con la participación activa de Colombia en el Grupo de Trabajo de Carbón del Comité de Cooperación Energética del G-3. Debe resaltarse la importancia del trabajo conjunto de los tres países para el desarrollo de la industria carbonífera de la región. Este grupo de trabajo concentra sus esfuerzos en encuentros de inversionistas de carbón, revisión de la legislación, mejora de imagen e intercambio de información.

También se recomienda la participación activa del país en los grupos y mecanismos de trabajo del PECC (Pacific Economic Cooperation Council) y del APEC (Asia Pacific Economic Cooperation), dada la incidencia y las posibilidades para el carbón colombiano en el mercado con mayor crecimiento previsto para la próxima década.

ARPEL: Asistencia Recíproca Petrolera Especial Latinoamericana
Gestión de la Demanda y Uso Racional de Energía
GESTION EFICIENTE DE LA DEMANDA Y USO RACIONAL DE ENERGÍA

La Gestión Eficiente de la Demanda y el Uso Racional de la Energía (URRE) constituyen estrategias básicas del PEN para garantizar la satisfacción de las necesidades energéticas mediante el uso óptimo de las fuentes energéticas y la adecuada utilización de los recursos de inversión, dentro de un contexto de sustentabilidad ambiental y económica.

El PEN propone una estrategia que pretende la superación de las barreras a la eficiencia energética, mediante la combinación de mecanismos de orientación del mercado e incentivos a la innovación tecnológica. En ese orden de ideas se han concebido las siguientes líneas de acción, cuyo avance se revisa en este capítulo.

- Política de precios y subsidios de energéticos
- Sustitución de energéticos
- Gestión de la demanda de energía
- Acciones de apoyo

SUSTITUCION DE ENERGETICOS

Penetración de Gas Natural y GLP

El plan de masificación de uso del gas natural constituye un punto clave dentro de la estrategia de URE, puesto que busca la sustitución de usos ineficientes de la energía eléctrica, como los de cocción y calentamiento de agua en el sector residencial. Al extender el servicio de gas natural a 321 municipios, se lograría una reducción de la demanda de energía eléctrica de unos 3000 GWh en 2010, si el plan se cumple en un 40%.

Variables como el período de financiación y el subsidio al costo de las acometidas de gas e instalaciones internas inciden sobre los ahorros de energía eléctrica que se pueden lograr en el sector residencial. Mediante el empleo de modelos de dinámica de sistemas1, la UPME ha evaluado estos ahorros bajo diferentes escenarios (gráfico 6.1), en los que se concluye la alta sensibilidad de los ahorros de energía eléctrica en el sector residencial frente a los costos y financiación de las acometidas para gas.

En el sector industrial el gas natural competirá con el crudo de Castilla, la energía eléctrica y el ACPM. Aunque el crudo de
Castilla es el energético de más bajo precio, su uso será más costo y/o restringido a partir del año 2001 por la puesta en marcha de controles ambientales, factor que abre un espacio para el gas natural. Frente a la electricidad y el ACPM, el gas natural presenta claras ventajas en cuanto a costos.

El gráfico 6.2 presenta las perspectivas de crecimiento del consumo de GLP incluyendo el programa de GLP rural. A partir del año 2005 es necesario realizar acciones para incrementar la oferta. La oferta suplementaria provendría de los campos del piedemonte llanero.

La participación del GLP en la canasta de energéticos del país dependerá de la superación de obstáculos de carácter económico, regulatorio, técnico e institucional. A partir de las directrices fijadas por el MME se debe adelantar la estructuración de un programa nacional de seguridad a ser aplicado por los agentes que intervienen en la comercialización del GLP. Se requiere desmonopolizar la oferta, promover la fusión de empresas distribuidoras, subsanar problemas de competencia desleal e informalidad en algunos segmentos de la cadena y promover una cultura de mercadeo, atención al cliente y calidad del servicio en las distribuidoras.

Sustitución de Gasolina por GNC y GLP en el sector transporte

El sector transporte en Colombia es un importante consumidor de energía y responsable de una significativa fracción de las emisiones contaminantes.

Los estudios realizados consideran que el país debe fundamentar inicialmente el programa de sustitución de combustibles en el transporte urbano de pasajeros y carga en el GNC. Entre otros factores se tienen en cuenta su mayor disponibilidad, seguridad para los usuarios, niveles de calidad adecua-

2 UPME. Evolución de la Conveniencia del Uso del GLP o GNC como Combustible Automotor: Cala, David. 1996

dos y estables, menor impacto ambiental y la tendencia mundial de su uso, soportada por los desarrollos tecnológicos que aumentan la eficacia de su utilización. La infraestructura de transporte de gas facilita la puesta en marcha del programa.

El PEN recomienda que el programa piloto sea desarrollado por el sector privado, con el compromiso y apoyo institucional del Estado. Un programa de GNC aplicado a 84 100 vehículos en cinco años, implicaría un consumo de aproximadamente 120 MPCD y reduciría 23 000 BPD del consumo de gasolina, con una inversión total en estaciones y vehículos del orden de US$ 460 millones.

El PEN también contempla dentro de sus estrategias el uso del GLP en automotores, como complemento al GNC y para propósitos específicos como las fícas dedicadas. Sin embargo debe asegurarse la disponibilidad de este combustible con un adecuado nivel de calidad, acorde con estándares internacionales y con programas de seguridad y planes de contingencia para su manipulación.

Además de estos proyectos de sustitución es necesario desarrollar acciones de incremento de la eficiencia energética en el transporte público de pasajeros y gestión de tráfico en las principales ciudades del país, particularmente en Santafé de Bogotá. Estas acciones deberán coordinarse con autoridades municipales y gremios de transportadores y comprenderán:

- Estimación de los potenciales ahorros de combustible
- Campañas de divulgación de información y de educación de los conductores
- Reordenamiento del transporte público urbano
- Gestión del transporte interurbano de carga y pasajeros

El PEN propone la creación de un sistema de gestión intersectorial para el transporte limpio, que convoque a las entidades responsables de la planeación, gestión, ejecución, control y seguimiento de actividades relativas al transporte, para lograr soluciones conjuntas y coordinadas a problemas del sector. Este sistema puede implantarse como parte de la Política Nacional de Producción más Limpia propuesta por el MMA.

Recuadro 6.1

SUSTITUCION DE ENERGETICOS

- Plan de Masificación de Uso de Gas Natural, cuyos mayores impactos se esperan en el sector residencial. Se recomienda la puesta en marcha de mecanismos de financiación de acometidas e instalaciones internas a los clientes
- GLP para regiones no atendidas por Gas Natural. Para su penetración deben resolverse obstáculos de carácter económico, regulatorio, técnico e institucional
- Las acciones de sustitución de gasolina se fundamentarán en el GNC bajo criterios de disponibilidad, calidad, seguridad, impacto ambiental e infraestructura. El uso de GLP automotor es una acción complementaria
- Se propone sistema de gestión interinstitucional para el transporte limpio
- En el sector rural se recomienda la sustitución de leña comercial por GLP y briquetas de carbón, definiendo espacios para cada uno de estos energéticos.
sentido en 1995 el Consejo Nacional de Política Económica y Social (CONPES) aprobó un programa para fomentar el uso eficiente y racional de la energía, sin afectar el bienestar de los usuarios y en un marco de equidad social\(^3\). Sin embargo, debido a dificultades de diversa índole, la implementación de este programa se ha demorado.

Administración de la demanda en el sector residencial

El sector residencial representa una fracción muy significativa del consumo de energía eléctrica. El principal instrumento para racionalizar el consumo en el sector residencial lo constituye el Plan de Masificación del Uso de Gas Natural. Adicionalmente, los patrones ineficientes de consumo se van a modificar mediante las siguientes acciones:

Sustitución de bombillas tradicionales por iluminación de alta eficiencia

El CONPES aprobó un programa de sustitución de 2'000'000 de bombillas incandescentes por bombillas compactas de alta eficiencia, que se adelantaría en un periodo de tres años. Este programa, que requiere la participación activa de las empresas distribuidoras de electricidad y un esfuerzo agresivo de mercadeo, se ha visto limitado por los fracasos en la financiación. Hasta el momento las acciones se han concentrado en el establecimiento de una reducción de los aranceles para la importación de las lámparas compactas fluorescentes, con miras a reducir su precio de venta final al público y facilitar su penetración al mercado.

Como parte de las acciones de promoción del uso de las bombillas eficientes es conveniente efectuar el lanzamiento del sello verde de eficiencia energética en coordinación con las entidades responsables de la normalización y expedición de garantías de calidad.

\(^3\) Documento CONPES 2901 de 1995, Estrategias y Acciones para fomentar el uso eficiente y racional de energía.
Creación de empresas de gestión energética

A nivel mundial se ha venido desarrollando el esquema de empresas de gestión energética dedicadas a desarrollar programas integrales que tienen como objetivo generar ahorros financieros a través del mejor uso de los recursos energéticos. El PEN propone promover el financiamiento y desarrollo de un mercado de la eficiencia energética en el país. Para ello es necesario colocar nuevas fuentes de financiación a disposición de los usuarios finales y de los proveedores de bienes y servicios de eficiencia energética. Deben apoyarse también las inversiones por parte del sector privado en este campo.

Gestión energética en el sector industrial

Dado que en el sector industrial colombiano el consumo de energía se concentra en un número reducido de industrias, se recomienda implantar mecanismos de gestión energética de estos macroconsumidores que les permitan mejorar la productividad y competitividad mediante una utilización más eficiente de la energía.

Conviene incentivar las acciones de reconversión industrial, a través del programa de Reconversión Ambiental que lleva a cabo el IFI. Asimismo, deberán contemplarse acciones en el marco de la política de producción limpia, convocando a entidades como el Consejo Empresarial Colombiano para el Desarrollo Sostenible (Cecodes) y la gerencia ambiental de la ANDI.

Se recomienda que las empresas comercializadoras de energía eléctrica, como parte de sus estrategias de servicio al cliente implanten acciones de asesoría para que sus clientes industriales mejoren su gestión energética. Este sería un servicio de valor agregado, adicional al que pueden prestar en el área de calidad de suministro de energía eléctrica.

Apoyo a la cogeneración en el sector industrial

La cogeneración permite la producción simultánea de energía eléctrica y energía térmica útil. Un proyecto de cogeneración
reporta beneficios a los industriales por ahorros en compras de electricidad, mejora en la confiabilidad de suministro de electricidad y reducción en los costos de suministro de energía eléctrica y térmica. Asimismo, significa un mejor uso de combustibles, dada la alta eficiencia de los sistemas de cogeneración.

La UPME realizó un estudio para el desarrollo de una metodología de estimación del potencial de cogeneración en Colombia4. Con base en esta metodología y la realización de encuestas se determinó un potencial de cogeneración de 423 MW para todo el país, distribuido como se muestra en el cuadro 6.4 (sin incluir azúcar).

<table>
<thead>
<tr>
<th>POTENCIAL DE COGENERACIÓN ESTIMADO</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>

La CREG expidió la reglamentación para la venta de excedentes de electricidad, lo cual permitirá la inclusión de la cogeneración en el mercado de energía eléctrica5. Se recomienda la participación de las empresas distribuidoras de energía eléctrica en estos proyectos para la coordinación de aspectos técnicos y comerciales de manera conjunta con los industriales.

El Instituto de Fomento Industrial (IFI) diseñó líneas de crédito para la reconversión a equipos eficientes. Algunos proyectos de cogeneración han sido financiados por el IFI dentro de esta línea. Otros proyectos fueron financiados por la FEN. El PEN propone impulsar la extensión de la cogeneración en el sector industrial nacional. Se debe llevar a cabo la divulgación de las ventajas de los proyectos de cogeneración a los industriales. Se recomienda al IFI mantener las líneas de crédito de reconversión industrial para continuar impulsando proyectos de este tipo.

Por otra parte, se recomienda estudiar el diseño de esquemas de desarrollo de proyectos de cogeneración por parte de terceros. Los proyectos de cogeneración en parques industriales que permitan optimizar los ciclos térmicos y aprovechar las economías de escala, pueden constituir una alternativa atractiva para los inversionistas privados.

Reducción de pérdidas de energía eléctrica

Las pérdidas de energía del sistema eléctrico colombiano continúan siendo un problema apreciable. El gráfico 6.6 presenta la evolución del índice de pérdidas de energía eléctrica. Con las acciones realizadas desde 1989 en el Plan de Emergencia de Recuperación de pérdidas y cartera, se redujo el índice de pérdidas. Sin embargo, después del racionamiento se presentó un nuevo crecimiento muy marcado de este índice.

Evolución del índice de pérdidas del sector eléctrico 1990 - 1996

Para controlar el problema se han adelantado acciones como la reactivación del comité de pérdidas bajo la coordinación de la Dirección General de Energía Eléctrica del MME. Además, fueron definidas metas de reducción de pérdidas para las empresas del sector y se están emprendiendo diversas acciones para su cumplimiento. Las metas de pérdidas han sido incorporadas en los planes de gestión de las empresas y la evolución de los planes implantados por ellas es controlada por la Superintendencia de Servicios Públicos Domiciliarios (SSPD).

4 UPME. Estudio sobre el Desarrollo del Potencial de Cogeneración en Colombia. AEN, Leda, Abril, 1996.
5 La Resolución 085 de octubre 15 de 1996 emitida por la CREG, reglamento las actividades del cogenerador conectado al Sistema Interconectado Nacional.
Por otra parte, mediante las fórmulas tarifarias se brindan incentivos a las empresas para la reducción de pérdidas.

El PEN propone las siguientes acciones complementarias para el control y disminución de pérdidas de energía eléctrica:

- Adelantar las gestiones de un crédito con el BID para financiar proyectos de inversión en distribuidoras, así como procesos de participación privada en estas empresas.
- La FEN deberá mantener líneas de crédito de acuerdo con la rentabilidad de los proyectos para los programas de reducción de pérdidas en las electrizadoras.
- Con base en la evaluación de proyectos que tengan mayor impacto en la reducción de pérdidas, se conformará una agenda prioritaria para la destinación de estos recursos. Los proyectos identificados se incluirán en los planes de gestión de las electrizadoras.
- La SSPD intensificará el control sobre la ejecución y resultados de los proyectos de reducción de pérdidas.

ACCIONES DE APOYO

Como parte de la estrategia de URE es necesario llevar a cabo acciones de carácter institucional, financiero, de información e investigación, control, seguimiento y capacitación, que contribuyan a superar las barreras actuales. Algunas de estas acciones se detallan a continuación.

**Recuadro 6.3
ACCIONES DE APOYO**

- Cooperación técnica con el BID para la implantación de la estrategia de Uso Eficiente y Racional de Energía
- Exploración de alternativas de apoyo con organismos internacionales
- Se propone el establecimiento de un sistema de administración y seguimiento de programas de URE
- Desarrollo del proceso de normalización técnica, certificación y etiquetado de equipos de uso final
- Estudios de mercado sobre las características del consumo de energía en los diferentes sectores, las necesidades y preferencias de los consumidores
- Implantación de modelos y metodologías de análisis para planificación y apoyo a la toma de decisiones en el campo de URE
- Reorientación de la gestión de entidades y fortalecimiento institucional

Cooperación técnica y económica

La UPME en coordinación con el DNP viene estructurando con el Banco Interamericano de Desarrollo - BID una cooperación técnica de tres años por un monto de US$ 12 millones para apoyar al gobierno en la implantación de la estrategia de uso eficiente y racional de energía. La operación de crédito financiará asesorías en áreas como: investigación, evaluación y desarrollo de diagnósticos, estudios de factibilidad, diseño de políticas y programas y el apoyo de procesos de gestión.

Seguimiento y control

El PEN recomienda que la UPME desarrolle un sistema de seguimiento de programas de URE7 en donde se hagan reportes periódicos de los avances, y se revisen resultados y dificultades de cada uno de los proyectos. Esto permite identificar las barreras existentes para la aplicación de los programas y coordinar acciones para su solución.

Normalización, reglamentación y etiquetado

Es necesario desarrollar un marco reglamentario y normativo para el URE. Deben expeditirse las normas técnicas sobre especificaciones, ensayos, certificación y etiquetado de equipos de uso final, de acuerdo con los lineamientos y procedimientos del Sistema Nacional de Normalización, Certificación y Metrología (SNNCM).
Estudios sobre el consumo de energía

Uno de los puntos que obstaculizan la definición de programas coherentes de uso eficiente de los energéticos es la carencia de información sobre la estructura de los usos finales de la energía en el país. La UPME continuará realizando estudios de mercado sobre las características del consumo de energía en los diferentes sectores, las necesidades y preferencias de los consumidores.

Campaña de divulgación sobre
Uso Racional de Energía

Algunos de las principales barreras para la implantación de acciones de eficiencia energética son de carácter cultural y están asociadas a los hábitos de los consumidores. Es necesario inducir la modificación de estos hábitos e incorporar prácticas de URE en la vida cotidiana. Para ello se consideran dos acciones de carácter permanente que ya se han venido adelantando:

- Campañas de información y divulgación a la comunidad por radio, televisión y prensa.
- Inclusión del tema de Uso Racional de Energía en la educación primaria y secundaria.

Capacitación de recursos humanos

Es necesario crear una cultura del Uso racional y eficiente de la energía. Esto significa desarrollar un plan de capacitación de recursos humanos en las múltiples disciplinas que intervienen. La capacitación es estratégica para desarrollar los objetivos de URE del PEN.

7 Entre las acciones efectuadas se cuentan la campaña publicitaria en televisión de ISA "Para que Colombia no se apague" y la del INEA en el boletín del consumidor.
Abastecimiento Pleno y Eficiente de Energéticos
ABASTECIMIENTO PLENO Y EFICIENTE DE ENERGÉTICOS

La tercera estrategia del PEN se refiere a lograr un adecuado aprovechamiento de recursos y el abastecimiento pleno y eficiente de energía. Se trata de promover la utilización óptima del potencial energético y disminuir las probabilidades de restricciones en la oferta, mejorando las opciones de sustitución y escogencia de energéticos para los consumidores, con criterio de sostenibilidad ambiental y económica. En el desarrollo de esta estrategia en el PEN se considera conveniente contar con:

* Niveles adecuados de exploración y aprovechamiento de recursos
* Infraestructura de abastecimiento acorde con los requerimientos y la diversidad deseada
* Reducción de la vulnerabilidad del sistema de producción y suministro
* Participación creciente del sector privado y desarrollo de mercados de libre competencia

A continuación se detallan los alcances y los avances en los elementos mencionados para cada uno de los subsectores.

PETROLEO

El adecuado aprovechamiento del recurso petrolero y el abastecimiento de la demanda interna de productos refinados, requieren incrementar los niveles de actividad exploratoria, de producción y refinación, al igual que la consolidación de la infraestructura de transporte, exportación, importación, almacenamiento y distribución de petróleo y sus derivados.

En el capítulo anterior se hizo referencia a la política de exploración y los cambios requeridos para incrementar la actividad en busca de nuevas reservas. En esta parte se presentan las acciones tendientes al incremento de producción, refinación y ampliación de la infraestructura de suministro.

Recuadro 7.1

PETROLEO

* Prolongar al máximo autosuficiencia petrolera nacional y mantener excedentes exportables
* Incremento de la actividad exploratoria mediante la participación del sector privado y la actividad directa de ECOPETROL
* Modernización y ampliación de la capacidad de refinación existente
* Fijación de reglas para incentivar participación privada en refinación
* Creación de un servicio de transporte de hidrocarburos competitivo en una concepción de acceso abierto
* Expansión del almacenamiento estratégico para reducir vulnerabilidad de abastecimiento

Expansión de los niveles de producción

La inversión en expansión de la producción de petróleo está asociada al descubrimiento de nuevas reservas y a su aprovechamiento (gráficos 7.1 y 7.2). El objetivo es mantener, asociado a un nivel adecuado de reservas, un volumen sostenido de producción en el mediano plazo. A partir de 1998 se espera un incremento significativo en los niveles de producción nacional con la entrada de la segunda fase del proyecto Cusiana-Cupiagua.

Un potencial adicional de producción corresponde a la producción mejorada o recobro secundario en áreas productivas ya desarrolladas. Para ello, bajo criterios de maximización de la rentabilidad económica se aplicarán nuevas tecnologías para aumentar el factor de recobro en yacimientos actualmente en explotación directa de ECOPETROL.
En 1997 se prevén inversiones de US$ 1573 millones, de los cuales US$975 millones corresponden a infraestructura de Cusiana. La participación de ECOPETROL en el total de inversiones de desarrollo de producción asciende a US$ 830 millones. Para los próximos años se prevén disminuciones en el total de inversiones directas en desarrollo, que pasarían de US$1000 millones en 1998 a US$468 millones en el año 2000. Estas disminuciones se deben a la falta actual de nuevos descubrimientos, pero se modificarían de acuerdo con resultados de actividades directas y asociadas en el piedemonte llanero.

la modalidad de asociación. La refinación y exportación de los volúmenes de producción que recibe la empresa estatal son la principal fuente de financiamiento, tanto de sus programas de exploración y desarrollo, como del pago de participaciones en regalías a las administraciones locales, regionales y el Fondo Nacional de Regalías. Conviene que el MME y el MHCP examinen el impacto de las transferencias de ECOPETROL a la nación y su relación sobre los niveles de inversión de la empresa estatal y su viabilidad financiera en el mediano plazo.

Expansión de la capacidad de refinación

Tradicionalmente la operación y expansión de la capacidad refinadora de crudo ha estado en cabeza de ECOPETROL. Dentro de la nueva estrategia energética se busca que las nuevas refinerías sean construidas y operadas por el sector privado. Sin embargo, la concreción de este propósito ha tenido algunas dificultades, debido fundamentalmente a los inconvenientes en la comercialización de los productos, el suministro de crudo y los precios de los derivados.

El abastecimiento de productos derivados del petróleo se ha fundamentado en la producción del Complejo Industrial de Barrancabermeja (CIB) y la refinería de Cartagena (CAR), que se han ido ampliando de acuerdo con los crecimientos de la demanda de los derivados de mayor consumo, particularmente la gasolina motor.

Con estas plantas y la nueva refinería privada en Nare, que entró en funcionamiento a comienzos de 1997, se eleva la capacidad de refinación del país a niveles promedios de 300 kbd y se hace posible limitar la importación de gasolinas a niveles inferiores a los 30 kbd en los próximos años. La inversión en refinación se incrementará a niveles superiores a los 240 millones de dólares por año entre 1997-2000, al ponerse en marcha los proyectos de ampliación de plantas de ECOPETROL.

En el largo plazo, para mantener bajos niveles de importación, se requiere acometer una ampliación de mínimo 75 kbd en la capacidad de refinación, que entre en servicio entre los años 2000 y 2003. ECOPETROL proyecta ampliaciones de 25 kbd en la refinería de Cartagena para 1999 y de 50 kbd entre Cartagena y el CIB para 2002, con lo cual se elevará la capacidad a 375 kbd en las dos principales refinerías a comienzos del próximo siglo.

1 Sin contabilizar las pequeñas plantas de ECOPETROL (Tibú, Oriente y Apia)
No se cuenta actualmente con proyectos privados de desarrollo en materia de refinación. La entrada de los privados a la actividad de refinación permitiría la obtención de mayores niveles de producción, introduciendo nueva tecnología y mayor eficiencia. Se recomienda que el MME fieje reglas de juego para atraer inversionistas privados en refinación en aspectos tales como sitios, precios, suministro de petróleo y comercialización de los derivados. Así mismo, ECOPELORL deberá estudiar las modalidades de contratación del suministro de los insumos básicos de producción y la estructura de precios aplicable.

Expansión de la industria petroquímica

Dentro de la labor de promoción del país en el exterior para la inversión privada, debe tenerse en consideración la presentación de las oportunidades para desarrollar una industria petroquímica moderna y de alta eficiencia para exportar y competir internacionalmente. Conviene recordar que la refinación y la petroquímica son opciones que le representan al país un mayor valor agregado derivado de la explotación y aprovechamiento de sus recursos de petróleo y gas natural.

Consolidación de la red de transporte y almacenamiento

El desarrollo de la red de transporte y almacenamiento de hidrocarburos está determinado por la necesidad de movilización de crudos y derivados del petróleo entre los campos de producción, puertos, refinerías y los principales centros de consumo. El objetivo es la creación de un servicio de transporte de hidrocarburos competitivo dentro de una concepción de «acceso abierto» 2. Se busca que los nuevos oleoductos y/o las ampliaciones de la red existente se desarrollen a través de las asociaciones o de sociedades creadas para ese fin. De esta manera, se impulsará la participación privada en la ampliación de la red de transporte y del almacenamiento estratégico.

El avance reciente de la infraestructura de transporte por oleoducto corresponde a las ampliaciones y nuevas líneas para llevar crudo del piedemonte llanero al puerto de Coveñas, es decir las líneas Cusiana-Vasconia y Vasconia-Coveñas. Estas obras son adelantadas por la empresa OCENSA para el desarrollo de los yacimientos descubiertos. En 1998 se contará con una capacidad de transporte por oleoductos de 570 kbd.

El desarrollo de la infraestructura de transporte de derivados ha estado principalmente a cargo de ECOPELORL. Las principales ampliaciones recientes en la infraestructura de abastecimiento corresponden a los políductos de Sebastopol-Medellín y Buenaventura-Yumbo, proyectados para entrar en el transcurso de 1997. Para 1998 se pretende contar con una capacidad disponible de 352 kbd en los políductos. Las inversiones proyectadas por ECOPELORL hasta el año 2000 en transporte son de 104 millones de dólares por año.

Se recomienda que la UPME, CREG y ECOPELORL realicen un estudio sobre regulación y tarifas de transporte por oleoductos y políductos. Esto contribuiría a hacer más transparente este actividad y facilitaría el proceso de liberación de precios de combustibles.

El almacenamiento de derivados comprende el almacenamiento operativo para el suministro y transporte, el cual está básicamente a cargo de ECOPELORL, y el almacenamiento comercial de los distribuidores. En cuanto al almacenamiento operativo, por el crecimiento de la demanda se requieren ampliaciones en los principales terminales, particularmente los ubicados en el Medio Magdalena (Sebastopol, Mariquita y Puerto Salgar).

GAS NATURAL

Una actividad fundamental para el logro de la estrategia de abastecimiento consiste en promover la diversificación de las alternativas de oferta, para lograr una matriz de consumo acorde con la dotación de energéticos en el país. La extensión del servicio de gas natural al interior del país constituye la principal alternativa para la diversificación de las opciones energéticas con mínimo costo. La utilización de las importantes reservas de gas natural, maximizando los beneficios netos al país por el uso del recurso, es uno de los objetivos prioritarios de la política energética.

2 ECOPELORL, Plan Indicativo de Gestión, 1995-98, pag. 43
Recuadro 7.2
GAS NATURAL

- Creación y consolidación de un mercado de gas natural en el país
- Gestión para corroborar las reservas probables de gas natural
- Estudio de modificaciones a contratos de exploración de hidrocarburos cuando se encuentra gas natural
- Ampliación de la capacidad de producción y de la red de transporte de acuerdo con necesidades del Plan de Masificación de Gas Natural y de la instalación de plantas termoeléctricas con base en gas. Permanente análisis de requerimientos
- Consideración de alternativas para atender consumos pico de gas (Almacenamiento estratégico).
- Coordinación de planeación, regulación y operación de los subsectores gas natural y eléctrico
- Extensión del servicio de distribución de gas natural
- Análisis de la estrategia de penetración de gas natural teniendo en cuenta la competencia con el GLP
- Creación de la bolsa secundaria de gas natural.

El objetivo principal es el desarrollo de un mercado nacional para el gas, para lo cual se viene adelantando un Plan de Masificación de este recurso, el cual comprende esencialmente la extensión del servicio de gas a usuarios del interior del país, sobre la base de programas para el aumento de reservas y producción y la extensión de la infraestructura de transporte y distribución. El marco regulatorio de este sector se ha orientado a fomentar la competencia desde un comienzo en las diferentes etapas de la cadena.

En los gráficos 7.3 y 7.4 se resume la evolución de suministro y demanda de gas natural en los últimos 20 años.

Incremento de reservas de gas natural

La situación de reservas de gas natural ha venido mejorando, como resultado de la actividad exploratoria de hidrocarburos. El efecto más importante de la evolución de reservas consiste en la distribución regional más equilibrada que se ha logrado, lo cual mejora el respaldo del plan de masificación en el interior del país.

Cuadro 7.1
RESERVAS DE GAS NATURAL

<table>
<thead>
<tr>
<th>Regiones y campos</th>
<th>Probadas (Gpc)</th>
<th>Probables (Gpc)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Costa Atlántica</td>
<td>3315</td>
<td>1100</td>
</tr>
<tr>
<td>Guajira</td>
<td>3157</td>
<td>1100</td>
</tr>
<tr>
<td>Guepaje</td>
<td>100</td>
<td>-</td>
</tr>
<tr>
<td>Interior del país</td>
<td>4448</td>
<td>2621</td>
</tr>
<tr>
<td>Opón</td>
<td>700</td>
<td>1400</td>
</tr>
<tr>
<td>Payoa, Provincia,</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Montañuelo</td>
<td>107</td>
<td>-</td>
</tr>
<tr>
<td>Distritos de</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ECOPETROL</td>
<td>610</td>
<td>21</td>
</tr>
<tr>
<td>Huila</td>
<td>13</td>
<td>-</td>
</tr>
<tr>
<td>Cusiana</td>
<td>2986</td>
<td>1245</td>
</tr>
<tr>
<td>Otros Piedemonte</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Totales</td>
<td>7673</td>
<td>3745</td>
</tr>
</tbody>
</table>
Incremento en la capacidad de producción

El objetivo principal del aumento de la capacidad de producción de gas natural consiste en atender los requerimientos que se presenten en el desarrollo del Plan de Masificación y en el Plan de Expansión del Sector Eléctrico, siendo este último el sector con mayor peso en el consumo de este combustible.

La mayor parte de la producción actual corresponde a los campos de la Guajira, en donde la construcción de una segunda plataforma (Chuchupa B) en el año 1996 permite contar con una capacidad adicional de 300 Mpcd, con lo cual el promedio de oferta potencial de gas guajiro supera los 600 Mpcd en la actualidad.

En el interior del país se dispone hoy en día de una capacidad de producción de 120 Mpcd, la cual se verá incrementada en el presente año en una cifra similar, sobre la base de los desarrollos de Opón (100 Mpcd) y Cusiana (20 Mpcd). Los suministros de Cusiana estarán limitados hasta finales de siglo, en razón de que se requiere reinjectar la mayor parte del gas extraído con el fin de garantizar la máxima recuperación del petróleo crudo en el yacimiento.

Las inversiones en la segunda plataforma de la Guajira ascendieron a US$110 millones, en tanto que las relacionadas con el desarrollo de la producción de Opón se estiman en US$100 millones. En el mediano plazo serán necesarias ampliaciones de capacidad de producción de gas en forma constante debido al crecimiento de la demanda.

Conformación de la red nacional de transporte de gas natural

El sistema de transporte de gas que se viene consolidando prevé tener la red básica concluida hacia finales de 1997. En mayo de 1996 entró en operación el gasoducto Balleña-Barranca, el cual une el sistema de la Costa Atlántica con el interior del país. En el transcurso de 1997 entrarán en servicio los gasoductos Mariquita-Cali, Centro-Oriente y Sebastopol-Medellín, así como las ampliaciones en el sistema troncal del Magdalena Medio, lo cual permitirá lograr el objetivo de un sistema nacional de transporte de gas natural, con sus correspondientes sistemas regionales, como se ilustra en el gráfico 7.5.

De forma paralela con el desarrollo del sistema de transporte se viene adelantando la conformación de la empresa ECOGAS, dedicada a la operación y administración del servicio de transporte de gas natural en el interior del país, al igual que a desarrollar y operar un centro nacional de coordinación o despacho de gas, independiente de productores, comercializadores, distribuidores y grandes consumidores. La empresa manejará los contratos de transporte sin preferencias hacia ningún productor o consumidor, desarrollando un portafolio de servicios que se ajuste a la creciente demanda. ECOGAS facilitará el ordenamiento institucional que promueva la eficiencia y el acceso abierto de los diferentes agentes a la red de transporte.

El centro nacional de despacho de gas coordinará y optimizará el sistema de transporte, monitoreará el estado de los diferentes gasoductos, efectuará labores de control y medición, llevará a cabo el planeamiento operativo de la infraestructura.
Las inversiones en la infraestructura de transporte de gas ascienden a 823 millones de dólares en la red básica y 64 millones en la red secundaria, con las características que se detallan en el cuadro 7.2. Para el período 1998-2016 se tienen identificadas necesidades de transporte adicional que deberán ser atendidas mediante compresión, antilo y líneas nuevas. Estas ampliaciones en el servicio requerirán inversiones de 1212 millones de dólares con la distribución que se indica en el cuadro 7.3. Sin embargo, estarán sujetas a revisión dependiendo de las expectativas de producción del piedemonte y del crecimiento de la demanda.

ECOGAS deberá buscar mecanismos que le permitan optimizar la infraestructura de transporte, como pueden ser el establecimiento de contratos interrumpibles para cierto tipo de usuarios a un precio atractivo, así como las transacciones de excedentes en la bolsa secundaria de gas.

Cuadro 7.2
INFRAESTRUCTURA DE TRANSPORTE PARA EL GAS NATURAL

<table>
<thead>
<tr>
<th>Gasoducto</th>
<th>Propietario</th>
<th>Fecha de entrada</th>
<th>Longitud (kms)</th>
<th>Diámetro (plg)</th>
<th>Inversión (MUS$ 96)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Red básica</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bellena-Barranca</td>
<td>CENTRAGAS</td>
<td>Abr/96</td>
<td>575</td>
<td>18</td>
<td>186.8</td>
</tr>
<tr>
<td>Centro-Oriente</td>
<td>ECOPETROL</td>
<td>Dic/95</td>
<td>573</td>
<td>12-22</td>
<td>265.0</td>
</tr>
<tr>
<td>Marquetta-Cali</td>
<td>TRANSGAS</td>
<td>May/97</td>
<td>340</td>
<td>20</td>
<td>276.0</td>
</tr>
<tr>
<td>Barranca-Phimansa</td>
<td>TRANSPORTIE</td>
<td>Dic/95</td>
<td>158</td>
<td>6-10</td>
<td>14.2</td>
</tr>
<tr>
<td>Sebastopol-Medellín</td>
<td>TRANSMETANO</td>
<td>Dic/97</td>
<td>145</td>
<td>12-14</td>
<td>55.9</td>
</tr>
<tr>
<td>Cuatana-Apoyo</td>
<td>ECOPETROL</td>
<td>Jun/96</td>
<td>149</td>
<td>12-14</td>
<td>2.4</td>
</tr>
<tr>
<td>Red Secundaria</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ramales Casanare</td>
<td>ECOPETROL</td>
<td>May/95</td>
<td>48.5</td>
<td>2</td>
<td>5.4</td>
</tr>
<tr>
<td>Ramales Cimarrán</td>
<td>ECOPETROL</td>
<td>Mar/95</td>
<td>30.8</td>
<td>2</td>
<td>19.0</td>
</tr>
<tr>
<td>Mont.-Guaylanday</td>
<td>ECOPETROL</td>
<td>Dic/85</td>
<td>36.0</td>
<td>4-6</td>
<td>2.4</td>
</tr>
<tr>
<td>Ramales Mota</td>
<td>ECOPETROL</td>
<td>Dic/95</td>
<td>71.0</td>
<td>2</td>
<td>2.5</td>
</tr>
<tr>
<td>Ramales Boyacá</td>
<td>ECOPETROL</td>
<td>Jun/96</td>
<td>82.7</td>
<td>10</td>
<td>20.2</td>
</tr>
<tr>
<td>Ram. Prov. Vélez</td>
<td>ECOPETROL</td>
<td>Dic/96</td>
<td>54.6</td>
<td>2-4</td>
<td>9.0</td>
</tr>
<tr>
<td>Ramales Piedemonte</td>
<td>ECOPETROL</td>
<td>Dic/96</td>
<td>47.0</td>
<td>2</td>
<td>3.6</td>
</tr>
<tr>
<td>Morichal-Yopal</td>
<td>ECOPETROL</td>
<td>Jun/94</td>
<td>13.0</td>
<td>4</td>
<td>1.8</td>
</tr>
</tbody>
</table>

Cuadro 7.3
AMPLIACIONES EN LA RED DE TRANSPORTE DE GAS (1998-2016)

<table>
<thead>
<tr>
<th>Tramo</th>
<th>Diámetro (plg)</th>
<th>Long. (kms)</th>
<th>Inversión MUS 1996</th>
<th>Año</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cusiana - El Povonar</td>
<td>30</td>
<td>35</td>
<td>28.2</td>
<td>1998</td>
</tr>
<tr>
<td>La Belleza - Vasconia</td>
<td>30</td>
<td>63</td>
<td>79.6</td>
<td>1998</td>
</tr>
<tr>
<td>El Povonar - La Belleza</td>
<td>30</td>
<td>187</td>
<td>149</td>
<td>1999</td>
</tr>
<tr>
<td>Payoa (Camb. Diámetro)</td>
<td>5</td>
<td>7</td>
<td>1.5</td>
<td>1999</td>
</tr>
<tr>
<td>Vasconia - Marquetta</td>
<td>20</td>
<td>121</td>
<td>57.7</td>
<td>2001</td>
</tr>
<tr>
<td>Zarzal - Valle</td>
<td>30</td>
<td>177</td>
<td>86.8</td>
<td>2001</td>
</tr>
<tr>
<td>Cota 1150 msnm - Medellín</td>
<td>12</td>
<td>27</td>
<td>7</td>
<td>2003</td>
</tr>
<tr>
<td>Barranca - Sebastopol</td>
<td>24</td>
<td>119</td>
<td>66</td>
<td>2003</td>
</tr>
<tr>
<td>Monterrey - Aplay</td>
<td>20</td>
<td>119</td>
<td>56.3</td>
<td>2005</td>
</tr>
<tr>
<td>Sebastopol - Vasconia</td>
<td>24</td>
<td>69</td>
<td>40.1</td>
<td>2005</td>
</tr>
<tr>
<td>Zarzal - Armenia</td>
<td>10</td>
<td>42</td>
<td>7.7</td>
<td>2007</td>
</tr>
<tr>
<td>Ciénagas - Cota 1150 msnm</td>
<td>14</td>
<td>17</td>
<td>5.7</td>
<td>2007</td>
</tr>
<tr>
<td>Marquetta - Guaylanday</td>
<td>8</td>
<td>129</td>
<td>18.9</td>
<td>2007</td>
</tr>
<tr>
<td>La Belleza - Vasconia</td>
<td>20</td>
<td>91</td>
<td>52.3</td>
<td>2007</td>
</tr>
<tr>
<td>Letras - Chinchina</td>
<td>24</td>
<td>49</td>
<td>32.8</td>
<td>2009</td>
</tr>
<tr>
<td>Barranca - Sebastopol</td>
<td>24</td>
<td>119</td>
<td>67</td>
<td>2009</td>
</tr>
<tr>
<td>Vasconia - Marquetta</td>
<td>20</td>
<td>121</td>
<td>57.7</td>
<td>2011</td>
</tr>
<tr>
<td>Cusiana - La Belleza</td>
<td>30</td>
<td>222</td>
<td>185.2</td>
<td>2011</td>
</tr>
<tr>
<td>La Belleza - Cogua</td>
<td>14</td>
<td>113</td>
<td>41</td>
<td>2014</td>
</tr>
<tr>
<td>Marquetta - Letras</td>
<td>20</td>
<td>62</td>
<td>35</td>
<td>2014</td>
</tr>
<tr>
<td>Monterrey - Aplay</td>
<td>24</td>
<td>110</td>
<td>67</td>
<td>2016</td>
</tr>
<tr>
<td>Zarzal - Valle</td>
<td>20</td>
<td>117</td>
<td>57.8</td>
<td>2016</td>
</tr>
<tr>
<td>San José del Nus - Cienagas</td>
<td>12</td>
<td>36</td>
<td>8.8</td>
<td>2016</td>
</tr>
</tbody>
</table>
En cuanto a las ampliaciones para atender las demandas pico, la construcción de infraestructura de producción y transporte bajo criterios de demanda máxima, requiere inversiones significativas que podrían ser subutilizadas durante periodos largos de tiempo. Por tanto, el PEN recomienda que se estudie la combinación de alternativas más eficientes técnica y económicamente. Es necesario considerar opciones adicionales al desarrollo de esta infraestructura como:

- Construcción de almacenamiento de gas cerca de los centros de consumo, bien en forma líquida o en estructuras geológicas, en las zonas donde esto sea viable.
- Oferta interrumpible en momentos de demanda pico para consumidores que puedan cambiar a un combustible alternativo.

Interacción de la expansión eléctrica y el suministro de gas

El suministro de gas natural es un elemento fundamental para el plan de expansión eléctrico que se detalla más adelante en este mismo capítulo. El sector eléctrico consume 45% del total de gas natural en el país. Se espera un incremento acelerado en la utilización de gas natural para generación eléctrica, en lo que su participación se incrementará hasta un 54% en el año 2010³.

Se recomienda que la UPME, ECOPETROL y ECOGAS establezcan mecanismos de seguimiento a la expansión de la red de transporte de gas natural, para garantizar el abastecimiento de este combustible en el mediano y largo plazo.

En el PEN se considera fundamental promover la coordinación en la planeación, regulación y operación de ambos subsectores, a través de los contratos de compra venta de gas y del servicio de transporte, como de las entidades encargadas del despacho de ambos servicios. Es necesario por lo tanto que dichos contratos tomen en cuenta las condiciones particulares del subsector eléctrico colombiano en cuanto a comportamiento de precios en bolsa y despacho. Con respecto a la regulación se recomienda a la CREG tener en cuenta la estructura particular de cada uno de los sectores y el desigual grado de desarrollo que presentan.

Bolsa de Energía

Dentro del contexto del manejo integral de recursos, se propone que la UPME, la CREG y el MME estudien la viabilidad técnica, económica y financiera de desarrollar una bolsa de energía, la cual permita optimizar el proceso de comercialización de los energéticos, especialmente el gas y la electricidad.

Distribución de Gas Natural

Con el desarrollo del Sistema Nacional de Transporte de Gas, se adelanta paralelamente el desarrollo de sistemas de distribución en las principales ciudades del interior del país y en otras localidades ubicadas en el área de influencia de la red nacional de gasoductos. Esto implica llevar el número de viviendas atendidas a más de tres millones y medio en el 2004.

El objetivo es que la distribución de gas natural sea llevada a cabo por el sector privado. Para ello se emplea el mecanismo de concesión de áreas exclusivas para atender clientes regulados. Se busca que el contrato cobre adecuadamente al concesionario y limite sus riesgos. Los grandes consumidores ubicados dentro de un área exclusiva, son libres de comprar directamente al transportador. Recientemente se realizó la adjudicación de áreas exclusivas en los departamentos de Valle, Quindío, Caldas, Risaralda y Tolima, para un total de 43 municipios que recibirán el servicio a partir de 1998. Se adelantará durante 1997 el mismo proceso para el Norte de Huila-Tolima y Cundinamarca - Boyacá. Las inversiones estimadas en redes urbanas para el período 1996-2004 ascienden a US$ 1150 millones.

El PEN recomienda actualizar la normatividad técnica y legal asociada a la industria con el fin de establecer herramientas adecuadas para el control de riesgos que garanticen la seguridad. Asociado a ello, debe adelantarse la puesta en marcha de laboratorios acreditados que estén en capacidad de certificar gasdomésticos y desarrollar sistemas de asistencia, vigilancia y control para el cumplimiento de las normas técnicas y de seguridad.

CARBON MINERAL

El carbón es un recurso importante para la diversificación de la oferta energética y el aprovechamiento óptimo de los energéticos disponibles en el país. Históricamente, las políticas para el carbón se fundamentaron en la participación del Estado en

las inversiones para el aprovechamiento del recurso. Aunque se avanzó en el desarrollo de la gran minería de exportación, la estrategia resultó ser muy costosa para el país en términos financieros. No obstante la elevada inversión que el Estado destinó hacia la gran minería de carbón, actualmente no se dispone de una infraestructura férrea y de puertos adecuada para exportar el producto de yacimientos distintos al de Cerrejón Zona Norte y La Loma.

Re cuadro 7.3

CARBON

- Promoción de la participación privada en la explotación del recurso y retiro del estado de las actividades empresariales
- Desarrollo de infraestructura de transporte y embarque, interregional y para exportación
- Gestión de acciones desde el lado de la demanda para promover el consumo
- Creación de líneas de crédito para desarrollo de proyectos de oferta y fomento del consumo
- Estudio de mecanismos para hacer viable participación de plantas carboeléctricas

Con base en recientes evaluaciones sobre el subsector carbonífero⁴ y el plan indicativo elaborado por ECOCARBON⁵, la política que se plantea en el PEN está orientada a:

- Redefinir el papel del carbón haciendo énfasis en su importancia como energético
- Promover la inversión privada (nacional y extranjera) en el aprovechamiento de este recurso para diversificar la oferta energética para el mercado interno y particularmente la destinada a la exportación.
- Fortalecer la planificación, promoción, regulación y control de la actividad carbonífera
- Concentrar las actividades de ECOCARBON (en el futuro MINERCOL), como entidad técnica sectorial administradora del recurso
- Separar y hacer compatibles las funciones sociales del estado con las de desarrollo de la industria del carbón
- Profundizar en el estudio y análisis de la demanda para identificar usos potenciales que puedan ser promovidos
- Desarrollar infraestructura de transporte interregional y para exportación, con miras a aumentar la competitividad de este energético, en el mercado nacional como internacional

- Apoyar la investigación y desarrollo tecnológico para promover prácticas eficientes y limpias de explotación y consumo de carbón
- Minimizar los efectos ambientales negativos de las actividades de la industria del carbón
- Plantear soluciones para las minas que no presenten viabilidad técnica, económica o ambiental. Si el impacto social generado es negativo, se mitigará con un programa de sustitución económica

Promoción de la inversión privada

La presencia del Estado en actividades empresariales interfiere el desarrollo de la industria del carbón, puesto que en su doble papel de regulador y empresario se constituye en una amenaza de competencia desleal en contra de los empresarios privados.

Se recomienda continuar con el retiro del Estado de las actividades de carácter empresarial. En este punto es estratégica la venta de la participación del Estado en el Proyecto Cerrejón Zona Norte. Se requiere definir la modalidad de venta de los activos de CARBOCOL y de operación del ferrocarril y el puerto.

Además, se recomienda fortalecer la capacidad negociadora del país mediante un análisis sistemático del mercado del carbón y suministrar información sobre demandas, usos, producción, calidad y precios, tanto a nivel nacional como internacional.

Desarrollo del mercado nacional de carbón

La promoción del mercado nacional del carbón se debe fundamental en:

- Definición de reglas de juego claras y estables
- Creación de líneas de crédito para desarrollar proyectos de oferta y fomento del consumo
- Política integral de precios de los energéticos y definición de espacios para cada uno
- Gestión para el desarrollo de la infraestructura de transporte y embarque

⁴ UPME, ECOCARBON, "Estudio sobre la política del recurso carbonífero en Colombia", Santafé de Bogotá, Abril de 1996
⁵ ECOCARBON, Plan de Desarrollo del Subsector Carbón 1997 - 2005, Santafé de Bogotá, Noviembre, 1996
En los gráficos 7.6 y 7.7 se resume la evolución de suministro y demanda de carbón en los últimos 20 años.

ENERGÍA ELECTRICA

Sobre la base de la reestructuración del subsector eléctrico colombiano se busca garantizar la prestación del servicio de energía eléctrica dentro de patrones óptimos de eficiencia, oportunidad, calidad y costo.

La estrategia para el abastecimiento pleno y eficiente de energía eléctrica se concreta en el plan de expansión de referencia para generación y transmisión, así como en las políticas y lineamientos establecidos para la actividad de distribución de electricidad.

Recuadro 7.4
ENERGÍA ELECTRICA

* Incentivo a la participación privada en generación, comercialización y distribución
* Diversificación de la canasta de energéticos para generación de energía
* Desarrollo de la red de transmisión en el largo plazo para consolidar sistema a 500 kV
* Desarrollo de mecanismos flexibles de contratación de suministro de gas natural para plantas termoeléctricas
* Reducción de restricciones globales y locales de transmisión al mínimo técnico-económico por parte de los transportadores
* Seguimiento a la evolución del mercado mayorista para garantizar su consolidación y eficiente desempeño
* Desarrollo de un mercado de futuros y de nuevos instrumentos financieros en el mercado mayorista
* Reestructuración institucional y financiera de las empresas de distribución
* Establecimiento de mecanismos claros para atender los subsidios a los estratos 1, 2 y 3, mediante la creación del Fondo de Solidaridad para Subsidios y Redistribución de Ingresos
* Análisis y seguimiento continuo de la demanda, la entrada de proyectos, el suministro de combustibles y las señales a los agentes participantes
Plan de expansión de referencia

En el nuevo marco legal, producto de la reestructuración del sector eléctrico, se define un esquema de planeación indicativa en donde las decisiones de inversión son tomadas de manera independiente por la acción de agentes públicos y privados. La UPME tiene la tarea de elaborar, actualizar y hacer el seguimiento de un plan de expansión de referencia para el sector eléctrico. El Plan de Expansión se basa en los siguientes criterios:

* Atender la demanda con una confiabilidad superior al 95% en el largo plazo
* Incrementar la firmeza del sistema, aumentando la participación térmica
* Mejorar la eficiencia energética, considerando tecnologías más eficientes y limpias
* Diversificar el uso de fuentes energéticas como el agua, el carbón y el gas natural

En octubre de 1996 la UPME publicó el Plan de Expansión de Referencia Generación - Transmisión 1996-2010, que tiene como objetivo principal brindar información y señales de corto y largo plazo a los agentes económicos sobre la inversión en generación y transmisión de energía eléctrica requerida para garantizar un suministro confiable y eficiente de electricidad en el país. De acuerdo con la evolución de la demanda de energía eléctrica y los avances en la entrada de los proyectos, la UPME realiza un proceso de actualización continua de los requerimientos en el corto y largo plazo.

Estrategia de corto plazo

En el corto plazo, la mayoría de proyectos de generación se encuentran en construcción o desarrollo. En el cuadro 7.4 se presentan los proyectos considerados para abastecer la demanda en el corto plazo, es decir hasta el año 2000.

Cuadro 7.4

PROYECTOS POSIBLES PERIODO 1997-2000

<table>
<thead>
<tr>
<th>Proyecto</th>
<th>Tipo</th>
<th>Capacidad (MW)</th>
<th>Fecha entrada¹</th>
</tr>
</thead>
<tbody>
<tr>
<td>Termo Centro</td>
<td>Gas C.A</td>
<td>200</td>
<td>Febrero/97</td>
</tr>
<tr>
<td>Termo Dorada</td>
<td>Gas C.A</td>
<td>50</td>
<td>Agosto/97</td>
</tr>
<tr>
<td>Repetición</td>
<td>Gas C.C</td>
<td>454</td>
<td>130 MW - Julio/97</td>
</tr>
<tr>
<td>Barranca</td>
<td>(restantes)</td>
<td></td>
<td>97 MW - Septiembre/97</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>97 MW - Diciembre/97</td>
</tr>
<tr>
<td>Termo Valle</td>
<td>Gas C.C</td>
<td>199</td>
<td>130 MW - Octubre/98</td>
</tr>
<tr>
<td>Termoflores III</td>
<td>Gas C.A</td>
<td>150</td>
<td>130.5 MW - Octubre/97</td>
</tr>
<tr>
<td>Termominieléctrica</td>
<td>Gas C.A</td>
<td>160</td>
<td>68.5 MW - Julio/98</td>
</tr>
<tr>
<td>Termo Cipón</td>
<td>Gas C.A</td>
<td>200</td>
<td>Septiembre/97</td>
</tr>
<tr>
<td>Termo Sierra</td>
<td>Gas C.A</td>
<td>300</td>
<td>Diciembre/97</td>
</tr>
<tr>
<td>Termoemcalli</td>
<td>Gas C.C</td>
<td>155</td>
<td>150 MW Enero/98</td>
</tr>
<tr>
<td>Termo Paipa IV</td>
<td>Carbón</td>
<td>155</td>
<td>150 MW Marzo/98</td>
</tr>
<tr>
<td>Porco II</td>
<td>Hidráulico</td>
<td>392</td>
<td>I trimestre/99</td>
</tr>
<tr>
<td>Urrá I</td>
<td>Hidráulico</td>
<td>340</td>
<td>Febrero/99</td>
</tr>
<tr>
<td>Mamonal 3 - I</td>
<td>Gas C.A</td>
<td>95</td>
<td>131 MW - Octubre/99</td>
</tr>
<tr>
<td>Termosantander</td>
<td>Gas C. A</td>
<td>96</td>
<td>131 MW - Abril/2000</td>
</tr>
<tr>
<td>Termoambilis</td>
<td>Gas C.A</td>
<td>1000</td>
<td>85 MW - Marzo/99</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>4166</td>
<td>Diciembre/2000</td>
</tr>
</tbody>
</table>

¹ Fecha de entrada actualizada en Junio 30 de 1997
La construcción de plantas de generación con base en gas natural se ha convertido en un elemento estratégico de la expansión del sector eléctrico, debido a su corto ciclo de construcción y las mayores oportunidades de financiación por parte del sector privado. En el mediano plazo, la instalación de plantas de generación termoeléctrica constituirán uno de los factores más importantes para la ampliación de la capacidad tanto de la producción como de la red de transporte de gas natural.

La mayoría de los proyectos de generación que se desarrollarán en el período 1997-2000 están definidos y con ellos su transmisión asociada. Sin embargo, se realizan análisis de corto plazo para estimar las obras necesarias que permitan el acceso de nuevos agentes y las obras necesarias para reducir las restricciones globales y locales que en la actualidad presenta el Sistema Interconectado Nacional (SIN).

En cuanto a la consolidación del mercado mayorista, el PEN recomienda un seguimiento continuo de la evolución de la bolsa de energía y examinar las acciones necesarias para que el mercado brinde las señales económicas para la expansión, presente estabilidad para los inversionistas potenciales, se incentive la eficiencia en la cadena y se estrene una asignación clara de responsabilidades para todos los agentes involucrados. Deberá estudiarse la implantación de un mercado de futuros y otros instrumentos financieros en el mercado mayorista en el mediano plazo.

Por otra parte, el gobierno nacional continuará impulsando la participación privada en actividades de generación y distribución. Después del proceso de venta de activos de generación llevado a cabo en 1996, continúan los procesos de privatización de empresas del sector buscando la diversificación de alternativas. Durante 1997 se han vendido acciones en EPSA y se programan la venta de acciones de EEB y algunas electrificadoras (Tollima, Quindío) y el proceso para la venta de las plantas Yumbo, Ocoa y Gualanday.

Se recomienda efectuar un seguimiento continuo a la evolución de la demanda de energía, con el fin de establecer con suficiente anticipación las necesidades de nueva infraestructura para su atención. Asimismo, se recomienda a la UPME y la UIME realizar esfuerzos para brindar señales e información unificadas y permanentes a todos los agentes. Por otra parte, se recomienda a la UPME gestionar el establecimiento de un registro de proyectos de generación de energía eléctrica con carácter obligatorio. Se hace necesario subsanar vacíos regulatorios que generan incertidumbre entre los diferentes agentes. Se recomienda la expedición por parte de la CREG, en el corto plazo, del código de racionamiento y el código de distribución.

Estrategias de largo plazo

Para el largo plazo (2001-2010), el plan de expansión plantea cuatro estrategias alternativas en función de diversos porcentajes de participación de los recursos agua, carbón y gas en el abastecimiento de la demanda prevista de energía eléctrica. En el cuadro 7.5 se presenta la composición de las alternativas analizadas en el periodo 2001-2010 para un escenario de demanda con crecimiento del 5.95% promedio anual.

Cuadro 7.5
COMPOSICION DE LAS ALTERNATIVAS (MW)

<table>
<thead>
<tr>
<th>Escenario de demanda (5.95%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Composición</td>
</tr>
<tr>
<td>-----------------</td>
</tr>
<tr>
<td>2001-2010</td>
</tr>
<tr>
<td>Hidro</td>
</tr>
<tr>
<td>Gas</td>
</tr>
<tr>
<td>Carbón</td>
</tr>
<tr>
<td>Total</td>
</tr>
</tbody>
</table>

2001-2010	LP-2
Hidro	2864
Gas	2529
Carbón	1200
Total	6593

2001-2010	LP-3
Hidro	2014
Gas	3342
Carbón	900
Total	6256

2001-2010	LP-4
Hidro	1361
Gas	3236
Carbón	1600
Total	6197

La participación de los energéticos al final del horizonte del estudio (año 2010) varía de acuerdo con las alternativas, tal como se indica en el gráfico 7.8. Para todas las alternativas se observa el incremento gradual de la generación térmica, representando al final del horizonte cerca de la mitad de la generación total esperada.

1 Corresponde al escenario utilizado para el Plan de Expansión de Referencia 1996.
A partir de la evaluación económica de las diferentes estrategias y considerando condiciones medias para la demanda, costos de combustibles e inversión, se obtienen en valor presente neto los valores totales de las estrategias, presentados en el cuadro 7.6.

Cuadro 7.6
VALOR TOTAL DE LAS ESTRATEGIAS
(Millones US$ de 1995)

<table>
<thead>
<tr>
<th></th>
<th>LP-1</th>
<th>LP-2</th>
<th>LP-3</th>
<th>LP-4</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>2948</td>
<td>3146</td>
<td>2690</td>
<td>3262</td>
</tr>
</tbody>
</table>

Se recomienda que ISAGEN adelante un plan de estudios para la conformación de un catálogo amplio de opciones de generación que puedan ser promovidas ante potenciales inversionistas o desarrolladas por parte del gobierno nacional.

Por otra parte, hacia el futuro - año 2010 - , el sistema de transmisión deberá ser capaz de ofrecer diferentes puntos de conexión a 500 kV en los principales sitios o regiones del país, previéndose que para el año 2005 el sistema de transmisión cuente con líneas a 500 kV hacia el centro desde el Magdalena Medio o desde el Nordeste, dependiendo de los desarrollos de generación que se tengan hasta ese momento, hacia el Suroccidente, y en la Costa Atlántica.

Esto debido a que las estrategias de generación consideradas prevén una alta capacidad instalada en las regiones de la Costa Atlántica, Nordeste y Magdalena Medio, lo cual obliga a reforzar la transmisión hacia las zonas de Bogotá, Suroccidente y a buscar otra ruta de evacuación de generación de la Costa Atlántica. De esta manera se espera consolidar una red de transmisión en forma de anillo a 500 kV.

Se han identificado tres tipos básicos de empresas de distribución y comercialización en el país:

- Empresas atractivas a los privados
- Empresas con necesidad de programas de gestión y reestructuración para hacerlas atractivas
- Empresas que requieren reestructuración de fondo, liquidación y creación de una empresa o fusión.

El **PEN** recomienda la vinculación de capitales privados a la actividad de distribución y de comercialización en las empresas del primer tipo. Esta participación se puede dar de diversas formas: mediante la contratación de algunas de las actividades desarrolladas por las electrificadoras, tales como facturación, medición, recuperación de cartera, etc., mediante el desarrollo de programas de uso racional de energía a ser implantados por empresas privadas, o mediante la emisión de bonos y acciones. El gobierno nacional preparará los términos de referencia para diseñar las estrategias que permitan privatizar algunas de estas empresas.

Se recomienda continuar gestiones para conseguir un crédito que permita la racionalización de empresas de distribución y comercialización eléctrica con problemas técnicos, financieros y de gestión. La participación de estas empresas en el crédito estará sujeta al cumplimiento de metas operativas, financieras y técnicas definidas en los planes de gestión. La meta del programa será contar con electrificadoras rehabilitadas con administradores y operadores privados.

La privatización de la distribución y de la comercialización y una mayor participación privada en la generación dependerán, entre otros factores, de la factibilidad del sector de autofinanciarse. Por esta razón, es necesario que las empresas sean compensadas por los ingresos que dejan de recibir al atender consumidores subsidiados. En este sentido, se recomienda acelerar el inicio del Fondo de Solidaridad para Subsidios y Redistribución de Ingresos.

Por otra parte, el **PEN** propone que se analicen y pongan en marcha los ajustes requeridos al marco legal y regulatorio para promover la eficiencia en las diferentes actividades del sector eléctrico. Se recomienda que la Superintendencia de Servicios Públicos juegue un papel más protagónico en el seguimiento y control de la ejecución de los planes de gestión de las empresas del sector; para coadyuvar a que el Sistema de Control de Gestión se convierta en la herramienta para incrementar la eficacia de la gestión de las empresas de servicios públicos.

Distribución y comercialización de energía eléctrica

El aumento en la eficiencia de las empresas distribuidoras y comercializadoras de energía eléctrica es una prioridad del país. El gobierno nacional impulsará la reestructuración institucional y financiera de las empresas y promoverá la vinculación de capital privado en las mismas.

Unidad de Planeación Minero Energética UPME
ENERGÍAS ALTERNATIVAS

La participación de las energías alternativas en el suministro energético del país es muy baja. Esto contrasta con los altos costos para el suministro de energía eléctrica en que tiene que incurrir más del 70% de los municipios del país cuyo número de habitantes es menor de 10000 y en los que, por tanto, son reducidos los niveles de consumo energético. De las revisiones sobre el potencial de las energías alternativas en Colombia, se concluye que existen nichos de mercado para el desarrollo de los siguientes esquemas de oferta:

* A nivel de mercados urbanos en calentamiento de agua con energía solar.
* Para mercados de zonas marginales urbanas y/o no interconectados, la electrificación descentralizada (pequeñas centrales hidroeléctricas, mediante gasificación de maderas, tecnología solar y eólica).
* Para comunidades rurales aisladas y/o escasamente pobladas, las energías alternativas pueden ser opciones viables.

El Plan de Desarrollo de Energías Alternativas6 propone una serie de programas que buscan incrementar su participación en el abastecimiento de la demanda proyectada de energía. Para que los mercados se puedan desarrollar, se requieren mecanismos transparentes de subsidios a la energización rural o de zonas no interconectadas7, un marco institucional y regulatorio adecuado para canalizar los recursos financieros, asegurar la calidad técnica y propiciar la recuperación de inversiones y metodologías de evaluación y seguimiento de proyectos energéticos y multipropósito.

7 La Constitución Nacional y la legislación en desarrollo amparan la continuidad de los subsidios a la población de menores ingresos, incluyendo la ubicada en zonas rurales o no interconectadas.

Unidad de Planeación Minera Energética UPAE
Energización Rural
ENERGIZACION RURAL

La energía es un elemento básico para los procesos de desarrollo rural del país, pero se requieren soluciones integrales de las necesidades. El patrón de abastecimiento se ha concentrado en la extensión de redes eléctricas, soluciones locales mediante plantas diesel para generación de electricidad y en el uso de leña, opciones que no hacen una utilización adecuada de las fuentes energéticas locales y provocan patrones de consumo ineficientes.

El sector residencial rural es el principal consumidor de leña, con las consecuentes implicaciones de índole ambiental, económica y social. Es necesario, sin embargo, distinguir entre la leña autodispersa y la leña comercial. Esta última es susceptible de sustituir por otras fuentes comerciales pero para la primera, la percepción de que es «gratuita» dificulta de manera apreciable la comercialización de substitutos. El gráfico 8.1 presenta la distribución del consumo de leña por sectores para 19951.

Aunque se han identificado algunos de los principales obstáculos a la solución de necesidades energéticas en el área rural, el país no ha podido pasar de la etapa de diagnóstico a la de acciones efectivas. El desarrollo rural debe concebirse en términos de el mejoramiento autosostenido en las condiciones de vida de estas comunidades, mediante estrategias orientadas a sus necesidades que permitan su participación activa en la concepción y puesta en marcha de los proyectos. Esto significa que debe enfatizarse el empleo de tecnologías energéticas que realicen un uso eficiente y sostenible de los recursos disponibles localmente2.

El PEN propone las siguientes líneas de acción para reorientar el proceso energético rural y tratar de garantizar su sostenibilidad:

* Desarrollo de un Sistema Interinstitucional de Gestión de la energía rural
* Abastecimiento diversificado y eficiente de recursos energéticos
* Evaluaciones de demanda y oferta energética
* Fortalecimiento institucional del CEL
* Diseño e implantación de esquemas financieros para energización rural

La puesta en marcha de estas acciones es un proceso que va mucho más allá del ámbito del sector energético pues está asociado a una concepción integrada de desarrollo rural y a las condiciones generales de nivel de vida en el país.

Recuadro 8.1

DESARROLLO ENERGETICO RURAL

* Articulación de la variable energética con el desarrollo rural en un marco de sostenibilidad ambiental y de equidad social
* Prioridad de soluciones integrales de energización sobre proyectos tradicionales de electrificación
* Protagonismo regional y municipal en la formulación, ejecución y operación de proyectos de energización
* Participación de la comunidad
* Coordinación entre entes de orden nacional, regional y local
* Uso eficiente de recursos con énfasis en fuentes disponibles localmente

En el sistema deben participar organismos de carácter nacional, regional y municipal, pero debe enfatizarse el protagonismo

1 ECOCARBON. Perspectivas de Sustitución de Leña por Carbón Mineral. Torres J. E., 1995

Unidad de Planeación Minero Energética UPME
de los programas regionales y locales. Se busca la incorporación de la variable energética en los planes de desarrollo regional y municipal y la modificación de la limitada perspectiva tecnológica de la problemática energética rural mediante la consideración de variables sociales, políticas y culturales.

Para poner en funcionamiento este sistema se hace necesario, dada la diversidad de agentes involucrados en la prestación de servicios y en el crecimiento rural, desarrollar acciones de información, capacitación y concertación en diferentes instancias, tendientes a potenciar las ventajas del nuevo esquema de desarrollo rural.

A nivel nacional es necesario coordinar actividades entre el MME y las entidades adscritas a este (UPME, ICEL, Comisión Nacional de Regalías) con los ministerios de Agricultura (Viceministerio de Desarrollo Rural) y Medio Ambiente, la Red de Solidaridad Social de la Presidencia de la República y el Fondo de Cofinanciación para la Inversión Rural DRI, mediante el establecimiento de unidades de gestión. A nivel regional debe involucrarse a CORPES, gobernaciones, corporaciones autónomas regionales y alcaldías.

ABASTECIMIENTO DIVERSIFICADO Y EFICIENTE DE ENERGÉTICOS

Debe adelantarse el abastecimiento a partir de un portafolio de recursos diversificados con énfasis en los recursos energéticos locales, el incremento de la eficiencia energética y la participación comunitaria tanto en la decisión de las soluciones como en la implantación y el control de gestión de estas. Para ello se plantean las siguientes acciones:

Sustitución de leña comercial por carbón y GLP

El uso de la leña, además de conformar un patrón inefficiente de consumo energético, ocasiona un impacto significativo al medio ambiente, principalmente por las prácticas predatorias de la leña comercial. El PEN propone la implantación de programas de sustitución de leña comercial por briquetas de carbón y GLP.

Recuadro 3.2

SUSTITUCION DE LEÑA COMERCIAL EN EL SECTOR RURAL

- Consideración de patrones económicos, ambientales, culturales y sociales que pueden actuar como barreras
- Estrategias agresivas de creación y consolidación de mercados (precio, promoción, divulgación, disponibilidad, infraestructura de abastecimiento) de los energéticos sustitutos, definiendo espacios para cada uno.
- Implantación de soluciones tecnológicas que aseguren viabilidad y sustentabilidad ambiental de procesos de sustitución
- Acciones básicas:
 - Promoción y distribución de GLP
 - Producción y comercialización de briquetas de carbón
 - Difusión de trapiches paneleros energéticamente autosuficientes
 - Sustitución de leña por carbón en el sector panadero

Un estudio llevado a cabo por la UPME3, para establecer posibilidades de sustitución de energéticos en el sector residencial, encontró que, de acuerdo con las condiciones económicas, sociales, culturales, geográficas y tecnológicas, existen condiciones favorables para que 281 municipios usen leña, 177 carbón, 268 GLP y 311 gas natural.

Las principales actividades de sustitución comprenden:

- Promoción y distribución de GLP en municipios no contemplados en el Plan de Masificación de Uso de Gas Natural.
- **ECOPETROL** adelanta el programa de GLP rural. La primera fase se lleva a cabo a partir de abril de 1997 en 7 departamentos, con un cubrimiento de 264000 viviendas en dos etapas: la primera etapa cubrirá 91000 viviendas y

la segunda 173000. Este programa contempla incentivos y facilidades para acceder al GLP, como la entrega de estufas y cilindros a los clientes.

ECOCARBON (en el futuro MINERCOL) pretende sustituir hasta el 50% del consumo de leña comercial en el sector residencial rural por cerca de 265000 toneladas de carbón en el año 2005\(^4\). Sin embargo, esta ambiciosa meta está sujeta a que el desarrollo de las briquetas les confiera las suficientes ventajas técnicas, económicas y comerciales sobre otros energéticos.

- **Difusión de trapiches paneleros energéticamente autosustitutivos.** El mejoramiento de los procesos de almacenamiento y combustión del bagazo utilizado en trapiches significaría un incremento considerable de la eficiencia energética de la industria panelera. Los trapiches pueden llegar a ser prácticamente autosustitutivos y podría reducirse o eliminarse el uso de leña como fuente complementaria de energía. Se propone que CORPOICA a través del CIMPA (Centro de Investigaciones de la Industria Panelera) adelante la cooperación de FEDEPANELA.

- **Sustitución de leña por carbón en el sector panelero.** Como acciones complementarias a un programa de trapiches autosustitutivos, ECOCARBON (en el futuro MINERCOL) desarrollará programas de sustitución paulatina de leña con la mezcla bagazo-carbón en hornillas y de instalación de calderas de carbón económicamente rentables\(^5\). De acuerdo con las metas de largo plazo\(^6\) podría sustituirse hasta un 30% de los trapiches medianos (1000) y grandes (100), lo que equivaldría a un consumo esperado de 500000 ton/año en el 2005.

- **El PEN recomienda** que estos programas se enmarquen dentro de estrategias agresivas de apertura de mercados internos para el carbón, basadas en la calidad del producto, demostración de la efectividad de las tecnologías y adecuados sistemas de comercialización.

Implantación de tecnologías de producción eficientes

Se recomienda fomentar la difusión de tecnologías de conservación y procesamiento de materias primas, productos agropecuarios, pesqueros y forestales que empleen distintas fuentes energéticas.

El PEN propone difundir tecnologías de uso eficiente de la leña, tales como estufas y hornos mejorados.

Diversificación de alternativas para suministro de electricidad

Las soluciones para suministro de electricidad en zonas rurales se han concentrado en la generación de electricidad mediante plantas diesel en zonas no interconectadas y la extensión de redes de distribución rurales. La planta diesel presentan costos muy altos, difícil mantenimiento, problemas ambientales y alta indisponibilidad de los equipos. Las redes rurales son también muy costosas debido principalmente a la dispersión y condiciones económicas de los clientes. Es necesario considerar otras opciones tecnológicas para este propósito, así como evaluar alternativas para el uso de energéticos sustitutos en aquellos usos que lo permitan.

Una de estas opciones es el desarrollo de Pequeñas Centrales Hidroeléctricas (PCHs). Proyectos de carácter flexible con bajo impacto ambiental. El ICEL ha identificado un conjunto de proyectos de PCHs en diferentes regiones del país\(^7\).

El PEN recomienda que el ICEL lidera los programas de instalación de PCHs en el país y se encargue de brindar asesoría a las comunidades con las que interactúa en el desarrollo de este tipo de proyectos con respecto a la auto-gestión del servicio de electricidad.

El PEN recomienda apoyar la creación de empresas locales autosostenibles de prestación del servicio de electricidad para las comunidades. En estas empresas debe buscarse la participación de la comunidad, los particulares y las administraciones locales. Los recursos públicos destinados para fines de

\(^5\) ECOCARBON. Op. Cit. 1995
\(^7\) ICEL. Portafolio de Proyectos de Generación Eléctrica. Zonas No Interconectadas. 1994
electrificación rural deben ser manejados con miras a su capitalización en empresas comerciales, empresas de servicios públicos o cooperativas.

Programas de energías alternativas

Se propone realizar la evaluación de los programas piloto para aplicación de fuentes alternativas. Con base en la evaluación debe conformarse un portafolio de proyectos de energización rural, que utilicen fuentes de energía renovables y definir las condiciones económicas, financieras, tecnológicas y de gestión para su puesta en marcha, de manera que puedan sacarse las ventajas de su etapa demostrativa para vincularlas a los procesos de desarrollo rural. Para diseñar el portafolio puede partirse de las evaluaciones de los potenciales de fuentes de energía renovables efectuadas en el país, pero los aspectos tecnológicos deben combinarse con elementos socio-económicos de cada región.

Reforestación multipropósito

La leña no comercial es la fracción más significativa de la leña consumida por el sector residencial rural. Su aprovisionamiento es menos predictible que el de la leña comercial. Sin embargo, en las regiones con alta concentración poblacional o déficit de abastecimiento se requiere incrementar la oferta de biomasa leñosa para consumo energético.

De hecho, el objetivo general de la política de bosques diseñada por el MMA es lograr un uso sostenible de los bosques. Como objetivos específicos se plantean la reducción de la deforestación mediante la armonización y reorientación de políticas intersectoriales y el incentivo de la reforestación, recuperación y conservación de bosques para rehabilitar cuencas hidrográficas y ecosistemas degradados, entre otros.

El PEN considera que el sector energético debe involucrarse en la puesta en marcha de acciones para alcanzar estos propósitos, de manera coordinada con los demás sectores involucrados. Como una de las instancias específicas de participación el sector energético deberá promover programas de recuperación de la oferta leñosa en las regiones con déficit más notorio desde el punto de vista energético.

EVALUACION DE DEMANDA Y OFERTA ENERGETICA

Se recomienda adelantar la caracterización energética de las zonas rurales para establecer los requerimientos energéticos y las oportunidades de satisfacción de los mismos, en función de las necesidades de la población y bajo la perspectiva de aumentar y diversificar la producción incrementando su valor agregado.

Partiendo de las estimaciones de requerimientos, es posible coordinar las acciones de las diferentes entidades con capacidad de acción en el área. Esta evaluación debe interpretarse como un instrumento de seguimiento de las necesidades energéticas de las zonas rurales, constituyéndose así en un instrumento de apoyo a la toma de decisiones de los organismos que coordinan la inversión en estas zonas. Uno de los aspectos que requiere mayor atención son las estadísticas de uso energético de la biomasa, dada la necesidad de medir de manera confiable la magnitud e impactos asociados y diseñar, sobre bases coherentes, políticas de sustitución por otros energéticos y de manejo de recursos renovables.

FORTALECIMIENTO INSTITUCIONAL

Reorientación del ICAL

El PEN recomienda la reestructuración del ICAL para que lidere la energización rural en todo el país, transformándose en una entidad de planeamiento, promoción, asesoría, coordinación y gestión de proyectos y empresas. El ICAL deberá reemplazar el Plan de Energización de Zonas no Interconectadas (PEZNI), para convertirlo en un Plan de Energización Rural (PER), que incluya diferentes fuentes de suministro de energía, además de la electricidad.

Fortalecimiento de mecanismos de participación comunitaria

Con el objetivo de seleccionar las opciones de participación que se puedan adaptar mejor a la prestación del servicio de
electricidad, GLP y otros energéticos, el PEN recomienda realizar un análisis de las experiencias de participación comunitaria en prestación de servicios públicos, realizadas por entidades del gobierno nacional y por ONGs, con el fin de establecer la existencia de comités de desarrollo de servicios públicos y el grado y modalidades de participación ⁹.

Se debe estudiar la viabilidad de empresas eléctricas o energéticas de carácter cooperativo, para establecer el tipo de organización que combine de la mejor manera recursos públicos y privados y vincule a los clientes en la propiedad cooperativa. Asimismo, el PEN recomienda propiciar la cooperación técnica internacional para asesorar y apoyar la creación de cooperativas de servicios energéticos. Por otra parte se propone establecer mecanismos para la evaluación de la gestión de las empresas de servicios energéticos en las zonas rurales.

ESQUEMAS FINANCIEROS PARA ENERGIZACIÓN RURAL

Las instituciones estatales de fomento económico y de desarrollo regional deben tratar de modificar los patrones de desarrollo de las zonas rurales y recientemente hacia una gestión participativa y, en lo posible, autosostenible.

La principal fuente de financiación es el Fondo Nacional de Regalías (FNR), que podría utilizarse de manera coordinada con los de las entidades territoriales, permitiendo armonizar prioridades regionales con las de índole nacional.

El Fondo de Cofinanciación para la Inversión Rural DRI constituye otra alternativa. Este programa se orienta a mejorar condiciones de vida de la sociedad rural apoyado en tres componentes básicos: Desarrollo institucional, inversiones para desarrollo rural y servicios de apoyo.

Se propone estudiar la alternativa de que el MME, directamente o a través del ICEL, canalice los recursos de inversión asignados por la Ley de Regalías a uno de los fondos nacionales de cofinanciación (por ejemplo, el Programa de Desarrollo Rural Integrado, DRI). Las Unidades Departamentales de Cofinanciación (UDECO), destinarian los proyectos energéticos municipales (previamente avalados por las comunidades beneficiarias) al fondo especificado, que otorgaría un subsidio único a la inversión del caso.

Por otra parte, se recomienda explorar las posibilidades de financiación por parte de organismos internacionales. Mediante convenios bilaterales con naciones como Suecia, Holanda, Alemania, puede lograrse apoyo para las actividades de energización que decidan acometer organizaciones comunitarias. Organismos de carácter multilateral como el GEF (Global Environmental Facility), el PNUD, ONUDI, entre otros, podrían aportar recursos para impulsar este tipo de iniciativas.

Existen además recursos de crédito de FINDETER que puedan ser destinados a proyectos de energización en las zonas no interconectadas. Se propone explorar la posibilidad de que la expansión y el mantenimiento de los proyectos de energización sean responsabilidad de las regiones y puedan financiarse con recursos propios de estas, por ejemplo mediante la implantación de un Fondo Rotatorio alimentado con recaudos tarifarios y posibles excedentes financieros del manejo de los proyectos.

9

Gestión Ambiental Energética

UPME
UNIDAD DE PLANEACIÓN MINERA ENERGÉTICA
GESTION AMBIENTAL ENERGETICA

Colombia ha suscrito acuerdos internacionales que comprometen su gestión en el corto mediano y largo plazo hacia objetivos de sostenibilidad ambiental, económica y social de su desarrollo y ha establecido políticas claras en la dirección del desarrollo humano sostenible. Estas políticas deben materializarse en acciones concretas que le permitan al país aprovechar racional y «sosteniblemente» sus recursos minerales y energéticos, así como mejorar las condiciones ambientales del desarrollo económico y social de los sectores y las regiones.

El informe de la Comisión Mundial del medio ambiente y del desarrollo -Comisión Brundtland-, denominado «Nuestro Futuro Común» (1987), trae a primer plano la necesidad común de la Humanidad de avanzar hacia el desarrollo sostenible, entendido como aquel que satisface las necesidades de la generación presente, sin comprometer la capacidad de las generaciones futuras de satisfacer sus propias necesidades.

Posteriormente, en la Cumbre de la Tierra en Río de Janeiro en 1992, se produce la Declaración de Río sobre el medio ambiente y el desarrollo y se adopta el concepto de desarrollo sostenible como propósito orientador de los esfuerzos de gestión ambiental.

Para el logro del objetivo de contribuir al Desarrollo Humano Sostenible, es fundamental la debida consideración a las interacciones energía-medio ambiente-economía, para establecer los impactos ambientales a lo largo de la cadena energética y determinar acciones y correctivos orientados a compensar los efectos desfavorables y potenciar los positivos.

Las actividades de exploración, explotación, transformación, transporte y distribución de carbón e hidrocarburos, la generación, transmisión y distribución de electricidad, así como el uso de energía en transporte, industria, comercio, servicios y domiciliario, producen impactos de distinta magnitud e intensidad sobre los medios físico, biótico, cultural, económico y político de las regiones en las que se desarrollan, con repercusiones en los entornos nacional e internacional, que deben ser tomadas en consideración al establecer la política para el desarrollo energético del país.

Las principales empresas del sector, como ECOPETROL y sus asociadas, ISA, CORELCA, ECCOCARBON, CARBOCOL, ISAGEN, EPM, EPSA, EEB, CHB y otras empresas privadas, con el concurso del Ministerio de Minas y Energía han desarrollado una tradición de responsabilidad frente a los impactos ambientales causados por sus actividades. Esta experiencia se traduce en un liderazgo nacional en cuanto a la realización de estudios ambientales, con alto rigor científico-técnico y la ejecución de planes de manejo ambiental para la construcción y operación de proyectos energéticos.

También hay que destacar los esfuerzos que se vienen realizando en los sectores industrial y de transporte, por mejorar las condiciones ambientales de su operación, los esfuerzos por racionalizar y hacer eficiente el uso de la energía en sus distintas formas y por aprovechar fuentes renovables alternas de energía ambientalmente sanas, en áreas urbanas y rurales del País.

POLÍTICA AMBIENTAL Y ENERGÉTICA

La nueva Constitución Política incorporó el derecho de las personas a gozar de un ambiente sano y la responsabilidad del Estado de planificar el manejo y aprovechamiento de los recursos naturales, para garantizar su desarrollo sostenible, conservación, restauración o sustitución. Establece también que la actividad económica y la iniciativa privada son libres, dentro de los límites del bien común.

El desarrollo legal y reglamentario de la nueva constitución en los aspectos ambientales, avanzó con la promulgación de la Ley 99 de 1993 y una serie de decretos complementarios que son la base de un marco normativo ambiental estable hacia el futuro, con amplia participación de los agentes económicos, sociales e institucionales comprometidos con el desarrollo nacional.

La política nacional ambiental orientada hacia el desarrollo humano sostenible, busca mantener la renovabilidad de los recursos, la reorientación de su utilización económica y la conservación de la diversidad étnica y cultural de la nación, con base en los objetivos de promover una cultura del desarrollo que incorpore patrones de poblamiento, tecnológicos y de consumo ambientalmente sanos, definiendo programas de mejoramiento ambiental como: Protección de ecosistemas estraté- gicos, población, mejor agua, mares y costas limpias, mas bosques, mejores ciudades y poblaciones, una producción limpia y el ordenamiento territorial, como instrumento fundamenta- l para el planeamiento ambiental y energético del país.
La política energética está orientada a racionalizar el uso de los energéticos, garantizar una oferta confiable y eficiente de estos, reducir sus costos, aumentar la cobertura, proteger a los usuarios e incrementar la contribución de las exportaciones a la economía. La conservación y el mejoramiento de la calidad ambiental en todas las instancias decisoriales, procesos productivos e inversiones futuras del sector es uno de los objetivos básicos de la estrategia energética integral adoptada por el país.

CARACTERIZACION AMBIENTAL DEL SECTOR ENERGETICO

A pesar de que los agentes económicos del sector han logrado establecer los impactos ambientales causados o esperados por distintos desarrollos energéticos, no se dispone hasta el momento de la información y el conocimiento sistemático del conjunto sectorial, lo cual impide hacer un análisis completo de las implicaciones ambientales de la estrategia de Desarrollo energético propuesta.

Se considera conveniente avanzar en una evaluación sistemática de la situación ambiental de la operación energética nacional actual y de la situación esperada de las estrategias y programas de expansión en curso, tratando de establecer las implicaciones económicas, sociales e institucionales de la incorporación de la dimensión ambiental en la toma de decisiones sobre el desarrollo energético futuro.

A pesar de la limitaciones de información antes señaladas, la UPME ha venido desarrollando la aplicación de modelos de simulación para el análisis de planeación como los módulos BALANCE e IMPACTS del modelo ENPEP, con base en información secundaria y en estándares de la EPA y el IPCC, para evaluar las emisiones atmosféricas causadas por las distintas actividades de la cadena energética. Estos análisis son útiles para evaluar la incidencia sobre la calidad de aire y sobre los impactos locales, regionales y globales asociados y se planea extenderlos a otras componentes de la calidad ambiental, como agua, vegetación y usos del suelo, hidrobiología, fauna y biodiversidad, en la dimensión físico-biótica, así como a las variables del medio cultural, económico y político.

EMISIONES DE GASES DE INVERNADERO 1990

<table>
<thead>
<tr>
<th>Gas</th>
<th>Millones de toneladas/año</th>
</tr>
</thead>
<tbody>
<tr>
<td>NOX</td>
<td>0.1</td>
</tr>
<tr>
<td>CO</td>
<td>0.4</td>
</tr>
<tr>
<td>CH4</td>
<td>1.8</td>
</tr>
<tr>
<td>CO2</td>
<td>134.1</td>
</tr>
</tbody>
</table>

Gráfico 9.1
Según el Inventario Nacional de Gases que Producen Efecto Invernadero (INGEI)
1 durante 1990 se emitieron en Colombia 190.1 millones de toneladas de CO
d2, 2 millones de toneladas de CH
d4, 8.8 millones de toneladas de CO y cerca de 570 mil
toneladas de óxidos del nitrógeno y compuestos orgánicos
volátiles diferentes al metano. La contribución relativa del efecto
climático acumulado, sobre un horizonte de 100 años, se re-
parte básicamente entre el dióxido de carbono (78%) y el me-
tano (20%).

El sector energía es responsable del 27.5% de emisiones de CO
don, 10% de CH
d4, 63% de CO (80% de nitrógeno y del
100% de compuestos orgánicos diferentes al metano. A pesar
de que en el país las emisiones de CO, NOx, N2O y de com-
uestos orgánicos volátiles son en su mayoría ocasionados por las actividades de combustión, su contribución relativa al
método climático global es inferior al 2%, siendo necesario
desarrollar el potencial de sumideros del país, asociado a la
conservación y ampliación de su cobertura forestal.

En el marco del PEN, Como una primera aproximación, la
UPME ha realizado una estimación del comportamiento de
las emisiones de gases de invernadero de los subsectores
residencial, industrial, transporte carretero, generación de
electricidad, explotación y transporte de carbón e hidro-
carburados, ocasionadas por su desarrollo futuro (1997-2010),
sobre los que se hace análisis de sustitución de energéti-
cos en los escenarios de demanda presentados en el cap-
ítulo tres (3).

Es necesario advertir que si bien los impactos ambienta-
les ocasionados por el uso de energía no son responsabi-
1 Academia Colombiana de Ciencias Exactas, Físicas y Naturales, GTZ. Inventario Nacional de Emisiones de Gases que provocon Efecto de
 Internadero. Santafé de Bogotá, Mayo de 1996

Unidad de Planeación Minero Energética UPME
EL MANEJO AMBIENTAL ENERGETICO

Sobre la base de la política y la regulación ambiental vigente y de las políticas ambientales empresariales y sectoriales, hay que destacar la acción desarrollada en las áreas de planeamiento, manejo y gerenciamiento ambiental que han significado grandes esfuerzos de inversión a los agentes económicos públicos y privados que intervienen en el desarrollo del sector, así como el pago de transferencias y tributos ambientales y de desarrollo, que representan márgenes significativos respecto de las inversiones y los costos totales de la ejecución de proyectos y de la operación energética.

La evaluación de la política nacional ambiental hacia el desarrollo humano sostenible, reliva las siguientes acciones adelantadas en el sector energético:

- El apoyo a proyectos de reconversión de termoeléctricas de carbón a gas, la expedición de licencias ambientales a proyectos prioritarios del Plan de Expansión Eléctrica, la elaboración de los términos de referencia para el Diagnóstico Ambiental de Alternativas y los Estudios de Impacto Ambiental para proyectos relacionados con las líneas de transmisión y la generación térmica e hídrica, la creación o el fortalecimiento de los comités de los diferentes subsectores (eléctrico, de hidrocarburos y de energías alternativas) para definir políticas e impulsar el desarrollo de proyectos específicos, la elaboración y aprobación por parte del Consejo Nacional Ambiental del Plan Nacional para el Control de Derrames de Hidrocarburos y la legalización ambiental de las actuales explotaciones de carbón.

Cabe destacar que, en cumplimiento de la Ley 99 de 1993, las empresas generadoras de energía hidroeléctrica y termoeléctrica transfieren el 6% y el 4% respectivamente de sus ventas de electricidad a Municipios y Corporaciones autónomas regionales, localizados en el área de influencia de las plantas.

En cumplimiento de la Ley de Regalías (141 de 1993) el sector de hidrocarburos transfiere como regalías a municipios y departamentos productores, a municipios portuarios y al Fondo nacional de regalías el 20% del valor de la producción en el sitio de explotación y el sector de carbón transfiere entre el 5% y el 10% del valor de la producción en boca de mina a los municipios y departamentos productores, municipios portuarios y al fondo nacional de regalías.

Finalmente, mediante estimaciones preliminares realizadas por ISA, se considera que las empresas destinarán el 4%, 8%, 12% y 12% de las inversiones en proyectos eléctricos a gas, carbón, hidroelectricidad y transmisión respectivamente, a estudios, programas de manejo y gerenciamiento ambiental.

Las empresas productoras, procesadoras y transportadoras de carbón e hidrocarburos también realizan inversiones significativas en estudios, programas de manejo y gerenciamiento ambiental.

Los ministerios de Minas y Energía y Medio Ambiente asignan dentro de sus presupuestos recursos para programas de apoyo a la gestión ambiental sectorial.

Los sectores industrial y de transporte satisfacen especificaciones técnicas ambientales y realizan también acciones no cuantificadas orientadas a garantizar un adecuado manejo ambiental en el uso de energéticos.

Los sectores de comercio, servicios y residencial, si bien generan impactos ambientales por el uso de energéticos, aun no han asumido su responsabilidad ambiental, por su carácter disperso e incontrolable, debiendo promoverse acciones voluntarias.

Se debe avanzar en la construcción de indicadores más confiables de costos ambientales de los procesos energéticos, para mejorar el planeamiento energético integrado y sostenible.

ESTRATEGIA DE GESTIÓN AMBIENTAL

Dado que no se dispone de un conocimiento cualitativo y cuantitativo suficiente de los impactos ambientales actuales y potenciales de los desarrollos energéticos del país, ni de las acciones y las inversiones ambientales requeridas para crear las condiciones de sostenibilidad ambiental del desarrollo energético del País, se hace necesario definir una estrategia que oriente la gestión ambiental pública y privada a este objetivo superior del PEN.
Re cuadro 9.1
LINEAMIENTOS ENERGÍA MEDIO AMBIENTE

- Articulación de la política energética con la política ambiental
- Estimación de emisiones de gases de invernadero por subsectores energéticos
- Establecimiento de instrumentos para incorporar la política de producción más limpia en el sector energético
- Fortalecimiento de la gestión ambiental de las entidades del sector energético
- Fomento de mecanismos de participación de las comunidades en la gestión ambiental de proyectos de infraestructura energética
- Participación del sector energético en el desarrollo del ordenamiento territorial ambiental
- Evaluación y participación en el establecimiento de los instrumentos económicos ambientales
- Establecimiento de un sistema de control y seguimiento de la calidad ambiental para las empresas del sector energético
- Desarrollo de un sistema de información ambiental minero energética
- Monitoreo del impacto del sector energético en el cambio climático, en el marco de los compromisos internacionales suscritos por el país

Integración de la política ambiental y energética

El MME y el MMA deberán adelantar la concertación y compatibilización de la política energética y la política ambiental nacional, apoyándose en el Convenio Interministerial ya suscrito y en el Comité previsto. Se recomienda al MME participar activamente en el Consejo Nacional Ambiental, vincularse al Consejo Técnico Asesor, fortalecer el Consejo Ambiental minero energético -CAME-, convirtiéndolo en órgano asesor del Sistema nacional ambiental -SINA-. Se debe fortalecer el Comité ambiental del sector eléctrico -CASEC- y el Comité Ambiental del sector de hidrocarburos e impulsar la creación de un organismo de coordinación ambiental entre los usuarios de energía (transporte, industria, comercio, servicios, residencial).

Fortalecimiento de la gestión social e institucional

El PEN recomienda consolidar las funciones de planeación y gestión ambiental del MME, de modo que se definan y ejecuten políticas, planes y acciones ambientales que faciliten el desarrollo energético sostenible propuesto.

El PEN recomienda que las entidades del sector energético asuman una posición proactiva en el fomento de los mecanismos de participación de las comunidades y las ONGs en la gestión ambiental de los proyectos de infraestructura energética. El programa consultivo y de participación de la sociedad civil deberá orientarse principalmente a las comunidades indígenas, negras y campesinas y a las ONGs vinculadas a la problemática ambiental minero-energética.

Desarrollo y evaluación de marco regulatorio y normativo

El PEN propone concertar un adecuado desarrollo de la normatividad ambiental en forma acorde con las posibilidades de desarrollo energético, mediante la participación del MME y de las empresas y entidades del sector, en la definición de normas, estándares, términos de referencia y guías ambientales, así como en la vinculación a los acuerdos internacionales sobre los sistemas de calidad, ISO-9000 y de manejo ambiental, ISO-14000, adaptando estos instrumentos a las condiciones del país.

Se recomienda al MMA desarrollar y promover instrumentos económicos ambientales como las tasas retributivas y compensatorias, tasas de uso del suelo, de aprovechamiento forestal, que operen como estímulos a la inversión ambiental de las empresas del sector energético. Se propone que la UPME realice evaluaciones de las implicaciones económicas de los diferentes instrumentos y participe al interior del SINA en la definición y establecimiento de los mismos.

El MME a través de la UPME desarrollará modelos de planeamiento ambiental energético que incorporen los costos e inversiones ambientales requeridas en la formulación y definición de planes de desarrollo energético subsectorial.

Asimismo, es de gran importancia que las señales económicas que provee la regulación energética incorporen criterios de eficiencia ambiental para los agentes que intervienen en los mercados energéticos. Se propone estudiar iniciativas que contribuyan a una adecuada regulación ambiental del mercado, a través de la CREG.

Apoyo a la política de producción más limpia

En desarrollo de las propuestas del CONPES para una producción limpia, se requiere promover y asesorar la crea-
ción o fortalecimiento de las unidades ambientales en los diferentes subsectores energéticos.

El MME y la UPME participarán en la discusión y adopción de la política de producción más limpia, contribuyendo al establecimiento de instrumentos de coordinación, seguimiento y evaluación de su avance, promoviendo la definición de la política y el desarrollo de los convenios y comités operativos de producción más limpia.

El PEN recomienda el desarrollar y adoptar tecnologías más limpias y promover el Programa de reconversión a tecnologías limpias del parque termoeléctrico colombiano y de las refinerías, acorde con las políticas y las metas de reducción de la contaminación y del impacto ambiental. Debe hacerse énfasis en el aumento de la eficiencia energética de las plantas y concentrar acciones en el control de emisiones atmosféricas.

El MMA y el MME deberán identificar y utilizar fuentes de financiación para el desarrollo de programas de producción más limpia, a través del presupuesto nacional, de participación en los recursos del Fondo Nacional Ambiental (FONAM), del Fondo Nacional de Regalías y de programas de cooperación técnica y económica con otros países y organismos internacionales.

- Incorporación de compromisos internacionales a la gestión ambiental energética

El PEN propone que el MMA, el MME, el Ministerio de Relaciones Exteriores y el DNP conformen un grupo de trabajo interinstitucional para analizar el impacto que tienen los compromisos ambientales internacionales suscritos por el país, en las políticas de desarrollo energético y examinar la viabilidad y conveniencia de su cumplimiento, bajo los principios de responsabilidad compartida y el respeto a la soberanía. Convienen, igualmente, evaluar y gestionar las opciones de cooperación técnica y financiera internacional, como el Global Environmental Facility (GEF) y los mecanismos de implementación conjunta (IC).

- Desarrollo de prácticas empresariales de gestión ambiental

El PEN recomienda que las entidades del sector energético avancen en la incorporación de la variable ambiental en sus procesos de planificación y en la toma de decisiones. Para ello deberán implementarse metodologías y modelos para la internalización de los costos ambientales y consolidar la información básica que se requiera como insumo. Como parte de ese proceso deberá propenderse por establecer procedimientos para evaluar los costos ambientales de las decisiones de política energética global y subsectorial.

El PEN recomienda que las empresas del sector energético participen en la conformación de un sistema de control y seguimiento de la calidad ambiental. Como parte de ello, podrían desarrollar sistemas de medición, monitoreo y control de contaminación, a partir de los cuales puedan efectuar un reporte periódico de su situación al MMA, las CARs, el DNP y el IDEAM.

El PEN recomienda que el MMA, la UPME y las empresas del sector realicen una evaluación ambiental conjunta y concertada, de la situación actual y esperada de los subsectores eléctrico, hidrocarburos y carbón, la cual permita definir planes indicativos de gestión ambiental para orientar las políticas correspondientes y definir prioridades de intervención, establecer metas, objetivos e indicadores de calidad ambiental.

Se propone que el MME y las empresas públicas y privadas del sector impulsen la adopción de códigos voluntarios de autorregulación y autogestión ambiental, mediante el desarrollo de políticas, metodologías e instrumentos para la evaluación de la calidad ambiental de los procesos y mediante la realización de auditorías ambientales.

- Información, investigación y capacitación

El MME desarrollará un sistema de información ambiental minero -energética, que sirva de soporte al planeamiento y gestión ambiental, complementario del Sistema de Información Ambiental Nacional que desarrolla el IDEAM.

Es conveniente que el MMA en coordinación con el MME acometan la evaluación sistemática de la situación ambiental del sector energético, en forma tal que permita contar con un análisis completo de las implicaciones ambientales del desarrollo sectorial por subsectores, así como el impacto económico de la degradación ambiental en cada uno de ellos. En esta evaluación se debe incorporar el concepto de SINERGIA (Sistema Nacional de Evaluación de...
Resultados de la Gestión Pública), mediante la definición de indicadores de gestión que permitan observar los desempeños de las entidades ejecutoras.

El MME promoverá a través del Sistema Nacional de Ciencia y Tecnología el desarrollo de la investigación aplicada orientada a fortalecer la investigación y el desarrollo de tecnologías y procesos ambientalmente sostenibles, de acuerdo con los requerimientos propios del sector energético e impulsará la creación y consolidación de los centros de investigación requeridos en el sector.

El MME y el MMA deben desarrollar programas de formación y capacitación para la gestión ambiental energética, mediante programas de cooperación e intercambio de experiencias y conocimientos a nivel nacional e internacional, dirigida a funcionarios, empresarios, consultores y a la comunidad en general.
10
Investigación y Desarrollo en Energía
INVESTIGACION Y DESARROLLO

Los cambios estructurales del sector energético, la presencia de nuevos actores, nuevas condiciones de financiación, mayores restricciones ambientales, entre otros factores, obligan a un desempeño mucho más eficaz y eficiente del mismo, para lo cual debe conformarse una base científica y tecnológica que reduzca la dependencia del país y le permita acceder a los escenarios de mercado, con productos de calidad, a precios competitivos y con mayor valor agregado.

Existen algunos obstáculos para hacer realidad una estrategia efectiva de creación y aplicación de conocimiento y para superarlos se requieren acciones en diversas instancias, factores limitantes como los bajos niveles de inversión en esta área, la insuficiente cantidad de personal calificado, la reducida asignación de recursos para investigación por parte de los estores público y privado y los inadecuados niveles de calidad y cobertura de la educación básica y superior.

Dentro de los objetivos del PEN se propone la definición de mecanismos para incrementar la capacidad y productividad científica y tecnológica de soporte del sector energético, incluyendo el fortalecimiento de la capacidad institucional, formación de recursos humanos, creación y consolidación de centros de investigación, información y comunicación y definición de áreas prioritarias de investigación.

FORTALECIMIENTO DE LA CAPACIDAD INSTITUCIONAL

El PEN enmarca sus propuestas de acuerdo con la Política Nacional de Ciencia y Tecnología, que plantea cinco estrategias básicas para integrar la ciencia y la tecnología a la vida nacional:

- Fortalecimiento del Sistema Nacional de Ciencia y Tecnología
- Creación de condiciones de competitividad para el sector productivo nacional
- Generación y aplicación de conocimiento científico y tecnológico para garantizar el desarrollo sostenible
- Integración de la ciencia y la tecnología a la sociedad y la cultura
- Fortalecimiento de la capacidad para conocer y mejorar la realidad social del país.
- Definición de mecanismos de financiación flexibles.
- Caracterización de los proyectos a ser apoyados.

Recuadro 10.1
INVESTIGACION Y DESARROLLO EN EL SECTOR ENERGETICO

- Reorientación de los lineamientos de investigación en energía, de acuerdo con los cambios estructurales en el sector.
- Fortalecimiento del Consejo del Programa Nacional de Investigaciones en Energía y Minería.
- Formulación de política de financiación con nuevas entidades y modalidades.
- Promoción de la participación de entidades del sector en formulación y financiación de proyectos I&D.
- Consolidación de grupos de investigación - creación de doctorados.
- Creación del Instituto para el Análisis de Sistemas Energéticos (IAE).
- Intercambio permanente de información y resultados de investigación.
- Integración de redes de investigadores con conexiones internacionales.
- Creación de espacios para difusión de problemática energética y resultados de investigación a la sociedad civil, e integración con los gremios de la producción.
- Impulso a la creación de redes de ONGs con capacidad de análisis, divulgación y monitoreo, asociadas al sector energético.
- Definición de áreas prioritarias de I&D.

FORMACION DE RECURSOS HUMANOS

La formación y capacitación especializada es una herramienta de gestión y conocimiento que debe ser aprovechada como una opción estratégica para lograr ventajas competitivas en el mercado, existiendo la necesidad de formación de personal altamente especializado y con capacidad de trabajar problemas del sector energético con una perspectiva integral y pluridisciplinaria.

Para ello, se recomienda promover dos acciones básicas:

- Formación de recursos humanos en el exterior, asociada a programas de cooperación internacional y a la gestión de recursos para la financiación de becas de estudio, también se debe promover la formación y capacitación dentro del país, con asistencia técnica internacional, adecuada a nuestras propias condiciones, a la vez que proyectar nuestra propia capacidad de conocimiento hacia otros países en desarrollo. El PEN recomienda que las empresas del sector energético mantengan y amplíen planes de capacitación definidos de acuerdo con sus planes de desarrollo y los incluyan en su presupuesto.

- Fortalecimiento, modernización y flexibilización de programas académicos nacionales, creando condiciones atractivas y estímulos para vincular profesionales a la actividad académica investigativa, crear o consolidar programas de doctorado en áreas estratégicas donde puedan desarrollarse centros de excelencia en el país.

- Postgrados en economía y planificación Energética, tecnología del gas, combustión en calderas, etc.

Fomento del trabajo conjunto sector académico sector productivo

Las universidades deben entrar en un proceso de modernización, que considere su labor de investigación al mismo nivel que la docencia. Para ello, el PEN propone que se revise su marco administrativo, para que respondan con agilidad y tengan capacidad de adaptación y asimilación de nuevos esquemas, acordes con los requerimientos de la investigación.

Además, se recomienda incentivar el acercamiento entre el sector académico y el industrial para la formulación de proyectos conjuntos. El PEN propone este mecanismo como una forma de esfuerzo conjunto entre COLCIENCIAS y el sector energético en la consecución de los recursos. El PEN recomienda que COLCIENCIAS siga coordinando los esfuerzos y manteniendo el apoyo a las áreas prioritarias de trabajo. Se recomienda concentrar la participación de COLCIENCIAS en el apoyo a proyectos de carácter básico y/o de más largo plazo, manteniendo para ellos la modalidad de recuperación contingente, siempre y cuando estén dentro de un programa de cofinanciación.

CREACION Y CONSOLIDACION DE CENTROS DE INVESTIGACION

El establecimiento de una red de Centros de Desarrollo Tecnológico constituye una de las estrategias fundamentales de la Política Nacional de Innovación y Desarrollo Tecnológico. En cuanto al sector energético, el PEN recomienda que se mantenga el apoyo a entidades como el Instituto Colombiano

del Petróleo (ICP), el Fondo Nacional de Investigaciones en Carbón (FONIC) y CORASFALTOS y que se brinde apoyo a la creación de otros fondos de investigación en el sector productivo.

El PEN recomienda la creación del Instituto para el Análisis de Sistemas Energéticos (IASE). El instituto centralizaría la coordinación de un conjunto de recursos físicos y humanos con el objetivo de dar soporte sólido al MME y a las demás entidades del sector energético, trabajaría en cooperación con los grupos de investigación universitarios en energía, permitiendo la puesta en marcha de programas de investigación complejos, multidisciplinarios y de largo plazo, con un esquema de funcionamiento de centro tecnológico virtual, que agrupe una red de centros de investigación.

Por otra parte, como mecanismo de apoyo a la innovación tecnológica, el PEN propone que se adopten incentivos fiscales y tributarios para las empresas que efectúen inversiones en actividades científicas y tecnológicas o realicen importación de bienes y equipos destinados para tal efecto.

INFORMACION Y COMUNICACION

El desarrollo del sector energético requiere contar con mecanismos amplios, oportunos, confiables y flexibles de comunicación e información, no solo de actividades de investigación y desarrollo, sino de todo el sector energético, de su interacción con los otros sectores y su integración a la vida nacional, para lo cual el PEN propone las siguientes acciones:

Consolidación de sistemas de información para el sector energético

El PEN recomienda la consolidación de un sistema de información y divulgación minero-energética nacional que permita brindar información oportuna y unificada a todos los actores, mediante el fortalecimiento de la UIME.

Como parte de la estrategia de divulgación se recomienda apoyar la creación y/o sostenimiento de publicaciones periódicas de calidad en el área energética y presentación de resultados en revistas internacionales.

Integración de redes de investigadores

Se recomienda incentivar la operación continuada de las redes virtuales en minería, recursos fósiles y planeamiento energético, las cuales soportan el desarrollo de las políticas sectoriales y fortalecen sus vínculos internacionales, así como la creación de nuevas redes en otros temas. Asimismo, debe promoverse la realización de conferencias, seminarios y encuentros de investigadores.

Divulgación a la sociedad civil

La sociedad colombiana debe ponerse en contacto con la actividad científica y tecnológica del sector energético, por lo que se requieren espacios para la difusión de los resultados de investigación en energía al público general, con lo cual se facilitará la participación ciudadana en las decisiones colectivas de desarrollo.

AREAS PRIORITARIAS DE INVESTIGACION

- **Planeamiento energético integrado**: Deben considerarse las interacciones entre los diferentes subsectores energéticos, considerando las interacciones energía, economía y ambiente, de manera que se pueda considerar la sustitución óptima entre recursos y resolver los conflictos entre políticas.

- **Prospectiva energética de largo plazo**: Es importante conformar grupos de trabajo para el análisis de prospectiva de largo plazo de la situación global y las tendencias geopolíticas, ambientales y económicas internacionales que puedan afectar el desarrollo del sector energético nacional.

- **Toma de decisiones con múltiples agentes y bajo incertidumbre**: Se requiere desarrollar metodologías de análisis para considerar múltiples criterios de decisión, que reflejen los conflictos de interés presentes en el entorno energético.
* Regulación: Un mecanismo básico que define las "reglas de juego". Se requiere examinar tópicos como los tipos de regulación convenientes, la relación entre regulación e información asimétrica, características de los mercados disputables, administración de subsidios, la racionalidad económica, ambiental, etc.

* Economía energética: Se requiere estudiar las relaciones entre el sector energético y los demás sectores económicos así como la coherencia de las herramientas de política energética con el entorno macroeconómico.

* Relación energía-medio ambiente: Consideración de la relación entre el desarrollo del sector energético y los cambios en el medio ambiente, definiendo criterios y metodologías para la evaluación de los efectos ambientales del sistema energético y de las medidas de control que sean impuestas y determinar técnicas de valoración económica de recursos y impactos y acciones ambientales y energéticos.

* Aspectos sociales de la política energética: Conocer la incidencia del sector energético en la evolución de los indicadores de desarrollo y equidad social de Colombia, establecer las condiciones y procedimientos para propiciar la viabilidad social y política de los desarrollos y usos energéticos.

* Tecnologías de gestión: Para que las empresas de servicios públicos puedan cumplir sus nuevos objetivos de manera eficaz, es vital que se les brinde apoyo en áreas como el control de pérdidas, la gestión de la demanda, calidad del servicio y la interacción con los consumidores, entre otros.

* Capacidad de negociación y contratación: Deben investigarse formas de contratación y negociación, evaluación histórica de la contratación en energía en Colombia y definición de marcos orientadores para la promoción de formas de asociación y de participación técnica y financiera en los desarrollos energéticos del País.

* Gas Natural y GLP: Es indispensable mantener proyectos de I&D que den apoyo al plan de masificación de uso de gas natural y a la industria del GLP.

* Evolución del mercado de energía eléctrica: Es imprescindible desarrollar herramientas de análisis y simulación de la evolución del mercado de energía eléctrica en el país. Deben examinarse aspectos como los efectos de las reglas del mercado sobre la oferta, la expansión de la generación en un ambiente de competencia, la posible evolución de la participación privada, la constitución de mercados de futuros etc.

* Tecnologías de producción y uso del carbón: El carbón es uno de los recursos de mayor abundancia en el territorio nacional, pero también uno de los que presenta mayores restricciones ambientales, de competitividad y versatilidad para su utilización, requiriéndose el desarrollo e impulso de tecnologías que permitan la extracción y aprovechamiento del recurso carbonífero de forma eficiente y limpia.

* Sistemas de exploración y explotación minera y petrolera: Se requiere desarrollo en métodos de prospección y exploración geológica, aplicación de herramientas modernas de diseño, prospectiva, planeación y control minero y petrolero, desarrollos geofísicos para caracterización de yacimientos y identificación de trampas de hidrocarburos complejos, métodos de extracción, tecnologías aplicables a la pequeña minería etc.

* Fuentes de energía no convencionales: Es necesario actualizar y detallar los estudios del potencial de fuentes alternas de energía, en los que deben involucrarse aspectos socioeconómicos, culturales y de participación de las comunidades que pueden ser usuarias potenciales.

* Uso eficiente de la energía: La implementación de las políticas de Uso Racional de Energía requiere la puesta en marcha de acciones de ahorro, conservación y uso eficiente que deben estar respaldadas por una capacidad científica y tecnológica adecuada.

* Calidad de la energía. (Power Quality, Gas Natural, GLP): Para implantar sistemas de calidad de suministro en servicios como la energía eléctrica, el gas natural, el GLP y otros combustibles, se requiere desarrollar investigación tanto en caracterización de la calidad actual del servicio, fenómenos que la afectan, concepción de metodologías para seguimiento y mejora, así como apropiación y desarrollo de tecnología.
* Apoyo al Sistema Nacional de Normalización, Certificación y Metrología (SNNCM): Se recomienda realizar acciones tendientes a fortalecer el SNNCM, crear mecanismos de coordinación para facilitar su interacción con el sector energético y promover el uso de servicios del SNNCM por parte de las entidades del sector.

* Ciencias básicas: El cumplimiento de las exigencias de calidad, eficiencia y eficacia en el abastecimiento energético significa la consideración integral de los problemas asociados. En esa medida debe desarrollarse investigación en ciencias como matemáticas, física, química, ciencia de materiales y biología.

Aspectos climatológicos, meteorológicos e hidrológicos: Es importante estudiar los fenómenos de esta índole que pueden afectar el desempeño del sector energético, tales como el fenómeno El Niño-Oscilación del Sur (ENOS), las descargas eléctricas atmosféricas, los regímenes de lluvias, vientos y radiación solar, hidrología, etc. En particular, se requiere un buen conocimiento del recurso hídrico, los balances hidrológicos, la cuantificación de la variabilidad en distintas escalas, entre otros. Asimismo, deben examinarse los efectos de cambio climático provocados por el sector energético, estudiando aspectos como las emisiones de gases de invernadero, entre otros.
Aspectos Institucionales de la Energía
ADECUACION INSTITUCIONAL

El marco institucional es un elemento fundamental para el aprovechamiento eficiente de los recursos energéticos, el uso racional de la energía y la formulación y puesta en práctica de políticas integrales para el sector energético.

El proceso de reordenamiento que se ha venido adelantando en el sector desde la expedición de la Constitución Política de 1991 y las leyes 142 y 143 de 1994, se ha orientado al diseño y consolidación de una estructura institucional adecuada, previsional y eficiente, para contribuir a lograr las metas de desarrollo económico y social sostenible, tanto a nivel global como de cada sector, sobre la base de los siguientes principios rectores:

- Fortalecer la capacidad de planeación energética integral
- Desarrollar la capacidad de regulación del Estado con independencia de las empresas suministradoras de los energéticos y de las regiones productoras.
- Desarrollar y fortalecer la capacidad de evaluación, seguimiento y control institucional y organizacional del sector energético.
- Adecuar institucionalmente los subsectores y, dentro de ellos, las empresas, para mejorar su eficiencia. Ha de propiciar la competencia entre distintos oferentes de un energético y facilitarse la sustitución entre energéticos, primando las condiciones económicas.

En el nuevo esquema del sector energético se han creado unidades especializadas como la Comisión de Regulación de Energía y Gas CREG, la Unidad de Planeación Minero Energética UPME, la Unidad de Información Minero Energética UIME y la Superintendencia de Servicios Públicos Domiciliarios SSPD, asignándose a cada una de ellas una labor específica.

En el sector de hidrocarburos se ha adelantado la reorganización de ECOPETROL para que pueda responder a las nuevas exigencias de la industria petrolera nacional. La empresa se ha estructurado por negocios independientes buscando orientar sus inversiones en los proyectos de mayor prioridad. Por otra parte se ha creado el Consejo Ambiental Minero Energético (CAME), el cual se encarga de asesorar al Ministerio de Minas y Energía en la orientación y concertación de acciones en el manejo y la gestión ambiental, así como en la interlocución con el MMA y demás entidades del Sistema Nacional Ambiental (SINA).

A pesar de las acciones adelantadas en la consolidación del proceso de reestructuración del sector energético, aún se requieren ajustes en los esquemas institucionales, regulatorios y financieros y en los mecanismos de incorporación de nuevos agentes participantes. Se requieren, entre otras, acciones de reorientación de la gestión de algunas entidades energéticas, en áreas como los subsectores carbón y eléctrico, el uso racional de energía, la energización rural y la gestión ambiental del sector.

Globalmente estas reformas institucionales que se han puesto en marcha en el sector energético caracterizan un proceso calificado como «del estatismo al mercado abierto» ¹, en el cual el Gobierno viene cambiando su papel de empresario ejecutor de una planeación central o concertada con las empresas del Estado en los diversos subsectores, hacia un desarrollo orientado por una planeación indicativa e integral y basado en forma creciente en la actividad privada y de empresas del Estado actuando como entes privados, con la debida regulación y vigilancia por parte de nuevas entidades establecidas para tales fines.

NUEVOS AJUSTES EN LA ESTRUCTURA INSTITUCIONAL

El proceso de cambio institucional ha estado caracterizado por los ajustes normales resultantes de la puesta en marcha de nuevos esquemas de planeación, regulación y gestión en el sector. Como reflejo de esta experiencia y de los análisis recientes sobre la situación y perspectivas del sector energético, se llevan a cabo nuevos ajustes que determinan la estructura institucional proyectada hacia el futuro (Ver gráfico 11.1). Ello requiere tener en cuenta los siguientes aspectos:

Subsector petrolero

Dada la importancia macroeconómica del petróleo para el país, se adelanta el proceso tendiente a la creación del Viceministerio de Hidrocarburos, con miras a fortalecer la posición de este sector dentro del MME. El nuevo Viceministerio cumplirá fun-

¹ UPME - GTZ. Seminario energia y Desarrollo. el Caso de Colombia, Santafé de Bogotá, Sept. 1995
aciones de asesoría y asistencia en la formulación y promulgación de la política petrolera.

El PEN propone la creación de un Comité de Planeación de Hidrocarburos, para estudiar y analizar la política petrolera y proponer los cambios necesarios para incrementar la competitividad del país en la atracción de inversionistas e incentivar la exploración. El comité podría estar integrado por el MME, ECOPETROL, ECOGAS, la UPME y el DNP.

Subsector gas natural

Dentro del recién creado Comité Interinstitucional de Control de la Industria del Gas Combustible, deberán revisarse los aspectos institucionales que requieran modificación y aclarar las competencias y jurisdicción de las diferentes entidades que actúan en el sector.

Se adelanta el proceso de creación de ECOGAS como empresa industrial del Estado. ECOGAS estará encargada de administrar la red de gasoductos del centro del país y operar un centro de despacho de gas y su creación contribuirá a clarificar el esquema institucional del eslabón de transporte en la cadena del gas natural.

Se recomienda compatibilizar la regulación expedida por la CREG para el subsector gas natural, con la regulación expedida por otras entidades relativa a los contratos de exploración y explotación de yacimientos. Por otra parte, se recomienda a la CREG estudiar atentamente los aspectos de la regulación que consideren la integración entre los subsectores eléctrico y gas natural.

Gráfico 11.1

ESTRUCTURA INSTITUCIONAL DE LA ENERGÍA 1997

NIVELES

- Global y Sectorial
 - CONFIS
 - DNP
 - Ministerio de Hacienda
 - Ministerio de Minas y Energía
 - Ministerio de Desarrollo Económico
 - Ministerio del Medio Ambiente

Subsectorial

- ISAGEN
- ISA
- FEN
- ECOPETROL
- CARBOCOL
- MINERCOL

Regional y Local

- Electrificadoras Departamentales
- Empresas Eléctricas Locales
- Empresas de Generación de Electricidad
- Empresas de Distribución de Electricidad
- Empresas de Distribución de Gas Natural y Terpeles
- Empresas de Distribución de combustibles y de GLP

FUCIONES

- Presidencia de la República
- CONPES

Planeación

- Regulación
- Coordinación

OPERA

- Contratos de Asociación

UNIDAD DE PLANEACIÓN MINERO ENERGÉTICA UPME
Subsector carbón

La política del carbón se orienta al retiro del Estado de las actividades empresariales y a fortalecer las funciones de planificación, promoción, regulación y control de la actividad carbonífera y energética. Dentro de ese marco, se estimulará la inversión privada, nacional y extranjera, para la explotación de yacimientos mediante contratos de explotación y explotación.

En ese sentido, mediante el Decreto 1679 de junio 27 de 1997, se determinó la fusión de ECOCARBON con MINERALCO en la nueva Empresa Nacional Minera Limitada -MINERCOL LTDA-. El objeto social de la nueva empresa es la administración de los recursos mineros y carboníferos de la nación. Como entidad técnica sectorial, MINERCOL estará encargada de administrar el recurso carbonífero, promover la explotación y caracterización de carbones y el desarrollo de la industria.

Por otra parte, se debe continuar con la venta de la participación de CARBOCOL en el proyecto Cerrejón Zona Norte, definido claramente los criterios y la estructura de la operación. Se recomienda que la UPME y MINERCOL estudien la posibilidad de promover la promulgación de una ley específica para el carbón.

Con el fin de garantizar la seguridad y diversidad en el abastecimiento de la demanda de energía eléctrica, el PEN recomienda la adopción de mecanismos para incentivar la inversión en generación térmica con carbón. Deberá continuar con el estudio de la propuesta de la sobretasa por robustez para las plantas de generación con carbón, cuyo monto se incluiría en la fórmula tarifaria y sería pagado por todos los usuarios, regulados y no regulados del sistema eléctrico.

Subsector energía eléctrica

Se recomienda la compatibilización del planeamiento operativo, en el cual se optimiza la utilización de la infraestructura existente, (bueno plazo, el primer año) que realiza el Centro Nacional de Despacho con el planeamiento indicativo (media no plazo, los cinco primeros años, y largo plazo, los siguientes diez años) que realiza la UPME.

Se recomienda adelantar acciones para consolidar el mercado mayorista de energía eléctrica:

- Estudiar e implantar mecanismos para que el funcionamiento del mercado mayorista provea las señales adecuadas para la expansión del sistema.
- Estudiar las medidas para garantizar la transparencia de la administración del mercado mayorista. En este sentido se propone que se evalúen esquemas para la conformación de una compañía independiente para la administración y operación del mercado mayorista.
- Estudiar las opciones para la conformación de un mercado de futuros en el mediano plazo

Se recomienda fortalecer a ISAGEN como promotora de proyectos de generación eléctrica del orden nacional. Esta entidad podría conformar catálogos de proyectos, realizar labores de promoción y convocatoria a inversionistas, examinar los mecanismos de financiación para su ejecución y coordinar con la UPME los estudios y análisis que sobre estos proyectos se deben realizar dentro de la planeación del subsector.

Con el objetivo de lograr la eficiencia de las empresas, deben examinarse las acciones de reforma requeridas en la administración de las empresas del subsector, particularmente en las electrificadoras. Promover el establecimiento de una cultura de calidad de servicio en las empresas y el desarrollo de sistemas de administración de gestión al interior de las mismas.

Se estimulará la participación de capital privado en las empresas públicas del sector. Asimismo, se continuarán las acciones para el saneamiento financiero y el fomento de la participación privada en actividades de distribución de energía eléctrica.

El PEN recomienda que la CREG defina parámetros de calidad del servicio, aplicable a las empresas distribuidoras. Ello facilita un mejor servicio al usuario.

Conviene también estudiar por parte de la CREG y la UPME la viabilidad de la bolsa de energía.

Uso Racional de Energía

Se requiere llevar a efecto un programa de fortalecimiento institucional del URE, en las áreas de planificación, coordinación y ejecución de proyectos. Actualmente se adelantan los estudios para definir la alternativa más conveniente para las necesidades del país.

Unidad de Planeación Minero Energética UPME
Es necesario además propender por el diseño y puesta en marcha de esquemas financieros institucionalizados que contribuyan a hacer autosostenibles los programas de Uso eficiente de Energía. Debe contemplarse que, en el largo plazo, cuando los programas de URE hayan madurado en el mercado, la mayor parte del esfuerzo de promover la eficiencia se desplace hacia el sector privado y los consumidores.

El PEN recomienda para el desarrollo institucional del uso racional de energía las siguientes acciones:

- Dotar al Programa de URE de un esquema institucional propio. En dicho esquema las labores de diseño y formulación de las políticas estarían a cargo de la UPME.
- Las entidades ejecutoras del Programa, en concordancia con la UPME, definirán las metas y la logística de su operación.
- La CREG, al fijar la política de precios, tarifas y subsidios, debe dar consideración expresa a la estrategia sobre conservación y uso racional de energía llevarse a cabo mediante reuniones internas de la UPME y la puesta a consideración de las propuestas al Comité de Planeación Energética.
- Fortalecer en la UPME la capacidad de análisis y evaluación de los planes y programas de URE.

Con la fusión de la Unidad de Información Minero Energética a la UPME, esta última entidad mejora substancialmente en cuanto a la disponibilidad y capacidad de allegar información de soporte para el funcionamiento de los modelos y demás instrumentos de análisis sectorial.

La CREG ha venido realizando un esfuerzo intenso por desarrollar el marco regulatorio de industrias tan complejas como la energía eléctrica, el gas natural y el GLP. Se requiere reformar la estructura y capacidad de análisis de la CREG con el fin de obtener un soporte sólido a las decisiones y reducir su dependencia de otras entidades. Es necesario dotar a la CREG de mayor autonomía e incrementar su soporte técnico.

Fortalecimiento de la UPME y la CREG

Se recomienda fortalecer la capacidad de análisis de la UPME. Esta unidad debe consolidar su posición como ente entidad de análisis y asesoría para la formulación y evaluación de los planes y políticas sectoriales. Sin embargo, dada la envergadura del sector, es necesario que la UPME pueda contar con los recursos de presupuesto, infraestructura y personal necesarios para ello. Las acciones básicas propuestas son:

- Fortalecer en la UPME la capacidad de análisis de los mercados energéticos.
- Fortalecer el área de hidrocarburos de la UPME, con miras a integrar adecuadamente estos recursos en la planeación energética del país.
- Fortalecer la capacidad de la UPME para efectuar análisis, planeamiento y gestión ambientales de los desarrollos energéticos.
- Establecer mecanismos para el seguimiento del PEN. Debe realizarse una evaluación periódica para la revisión de metas y estrategias y proposición de ajustes. Esto podría

Energización rural

Se recomienda reestructurar al ICEL para que lidere y coordine el proceso de energización rural. El ICEL está encargado en la actualidad de la electrificación de zonas no interconectadas. Sin embargo, es claro que las soluciones energéticas para estas y las demás zonas rurales deben ser concebidas desde una perspectiva integral de energización rural.

Supervisión y control de la gestión de las empresas

Se recomienda el fortalecimiento de la capacidad de supervisión y control de la SSPD. Asimismo, esta entidad debe propender por la coordinación de su actividad sancionatoria con el estado de la regulación vigente.

Se recomienda a la CREG estudiar los ajustes requeridos a la regulación sobre planes de gestión y resultados de las empresas de gas natural, para que reflejen adecuadamente la condición de contrato de concesión mediante la cual operan, fundamentalmente diferente de las empresas de energía eléctrica.
Reestructuración del Ministerio de Minas y Energía

El MME ha venido evolucionando en su estructura, para adecuarla a las responsabilidades prioritarias de formulación, orientación y gestión de la política integral de la energía. El Decreto 1674 de junio 27 de 1997, el Ministerio ha simplificado su estructura interna a solo seis dependencias, delegando las actividades de operativas y de administración de recursos en las empresas industriales y comerciales que le están adscritas. El control de gestión de empresas en las cuales la nación tiene derechos de propiedad podrá efectuarse a través de contratos de administración profesional de acciones con entidades fiduciarías.
Anexos:

1. Flujo energético 1996
2. Balance Energético
3. Análisis de Necesidades de Exploración
4. Mapas
5. Siglas y Abreviaturas
6. Unidades de Medida
<table>
<thead>
<tr>
<th>ENERGETICO</th>
<th>ENERGIA PRIMARIA</th>
<th>ENERGIA SECUNDARIA</th>
</tr>
</thead>
<tbody>
<tr>
<td>UNIDAD ORIGINAL</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hidroeléctrica</td>
<td>kWh</td>
<td>GWh</td>
</tr>
<tr>
<td>Central Hidroeléctrica</td>
<td>35,277</td>
<td>0</td>
</tr>
<tr>
<td>Central Térmica</td>
<td>0</td>
<td>7,566</td>
</tr>
<tr>
<td>Autoproducente</td>
<td>0</td>
<td>1,567</td>
</tr>
<tr>
<td>Central Tratamiento de Gas</td>
<td>0</td>
<td>2,076</td>
</tr>
<tr>
<td>Refinerías</td>
<td>0</td>
<td>4,524</td>
</tr>
<tr>
<td>Cooperativas</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Almacenes</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Carboneros</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Suma</td>
<td>0</td>
<td>3,111</td>
</tr>
</tbody>
</table>

1.1 Producción | 41,219 | 205,340 | 258,789 | 20,065 | 12,024 | 12,339 | 3,111 | 44,605 | 4,524 | 2,076 | 1,279 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |

1.2 Importaciones | 0 | 0 | 117,574 | 24,791 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |

1.3 Exportaciones | 0 | 0 | 117,574 | 24,791 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |

1.4 Variación de Inventario | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |

1.5 No Aprovechado | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |

1.6 Perdidas | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |

1.7 OFERTA INTERNA | 41,205 | 122,136 | 108,698 | 4,904 | 12,034 | 12,339 | 3,111 | 35,024 | 4,524 | 7,832 | 48,262 | 6,626 | 21,654 | 1,328 | 13,058 | 530 | 110 | 1,084 |

1.8 AJUSTE | -2,047 | 2,419 | 0 | 0 | 0 | 0 | 0 | 0 | -1,685 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |

1.9 DEMANDA INTERNA | 42,252 | 189,718 | 108,142 | 4,904 | 12,034 | 12,339 | 3,122 | 36,008 | 4,524 | 7,832 | 48,262 | 6,626 | 21,654 | 1,328 | 13,356 | 530 | 110 | 1,124 |

2.1 Consumo Propio | 0 | 18,999 | 427 | 0 | 0 | 0 | 0 | 703 | 4,524 | 62 | 57 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |

2.2 Trans/Reciclado/Perd Tram | 42,252 | 102,941 | 102,585 | 1,861 | 4,99 | 617 | 157 | 0 | 0 | 135 | 579 | 0 | 251 | 165 | 0 | 479 | 0 |

2.3 Consumo Final | 0 | 42,252 | 102,941 | 102,585 | 1,861 | 4,99 | 617 | 157 | 0 | 0 | 135 | 579 | 0 | 251 | 165 | 0 | 479 | 0 |

2.4 Residencial | 0 | 13,962 | 0 | 219 | 9,750 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |

2.5 Comercial y Público | 0 | 2,094 | 53 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |

2.6 Industrial | 0 | 44,715 | 5,889 | 2,723 | 61 | 8,440 | 1,576 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |

2.7 Transporte | 0 | 2,513 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |

2.8 Agropecuario y Minero | 0 | 0 | 84 | 0 | 1,724 | 3,263 | 912 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |

2.9 Construcciones | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |

2.10 No Identificado | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |

| 3,152 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |

VERSION PRELIMINAR Fuente: UME
<table>
<thead>
<tr>
<th>ENERGETICO TERACALORIAS</th>
<th>ENERGIA PRIMARIA</th>
<th>ENERGIA SECUNDARIA</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total 1,996</td>
<td>1,996</td>
<td>1,996</td>
</tr>
</tbody>
</table>

1.1 Producción	1,996	1,996
1.2 Importaciones	1,996	1,996
1.3 Exportaciones	1,996	1,996
1.4 Variación de inventario	1,996	1,996
1.5 No Aprovechado	1,996	1,996
1.6 Perdidas	1,996	1,996

2.1 OFERTA INTERNA	1,996	1,996
A JUSTE	1,996	1,996
2.2 DEMANDA INTERNA	1,996	1,996

| 2.1 Consumo Propio | 1,996 | 1,996 |
| 2.2 Transl.Reciclado/Pend Transf | 1,996 | 1,996 |

| 2.3 Consumo Final | 1,996 | 1,996 |

Fuente: UINE	1,996	1,996														
CARGA A REFINERIAS (KBPDC)																
Barranca	295.8	297.5	297.5	297.5	297.5	297.5	297.5	297.5	297.5	297.5	297.5	297.5	297.5	297.5	297.5	
Cartagena	202.2	203.9	204.9	205.9	206.9	207.9	208.9	209.9	208.9	209.9	206.9	206.9	206.9	206.9	206.9	
Nazca	79.0	74.0	74.0	74.0	74.0	74.0	74.0	74.0	74.0	74.0	74.0	74.0	74.0	74.0	74.0	
Minerales	4.5	4.5	4.5	4.5	4.5	4.5	4.5	4.5	4.5	4.5	4.5	4.5	4.5	4.5	4.5	
PRODUCCION DE CRUDOS (KBPDC)																
Asociacion	626.3	655.2	890.9	881.1	956.3	895.5	783.3	691.4	644.6	551.9	470.8	421.9	371.7	313.8	270.3	
Enriquecimiento	496.4	541.4	748.9	761.6	840.8	795.4	697.1	615.4	572.8	486.1	436.7	364.0	317.8	283.3	222.7	
Operacion Directa (Sin Cepos)	15.2	9.9	8.4	7.4	6.5	5.9	4.7	3.5	2.4	1.9	1.5	1.1	0.7	0.5	0.3	
RESERVAS REMANENTES (MBBL)																
Revaluacion	2951.9	2798.4	2555.6	2236.1	1916.5	1567.8	1242.4	955.5	703.1	467.9	285.4	94.6	-59.4	-151.5	-209.6	
Consumo	11.9	75.1	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
RELACION (RP)																
13.8	12.2	10.5	7.9	6.0	4.5	3.8	3.3	2.8	2.0	1.3	0.6	-0.4	-1.4	-2.7	-4.1	
PRODUCCION DE CRUDOS (KBPDC)																
Asociacion	626.3	655.2	890.9	881.1	956.3	895.5	783.3	691.4	644.6	551.9	470.8	421.9	371.7	313.8	270.3	
Operacion Directa (Sin Cepos)	15.2	9.9	8.4	7.4	6.5	5.9	4.7	3.5	2.4	1.9	1.5	1.1	0.7	0.5	0.3	
CAMPOS NUEVOS	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
RESERVAS REMANENTES (MBBL)																
Revaluacion	2951.9	2798.4	2555.6	2236.1	1916.5	1567.8	1242.4	955.5	703.1	467.9	285.4	94.6	-59.4	-151.5	-209.6	
Consumo	11.9	75.1	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
RELACION (RP)																
13.8	12.2	10.5	7.9	6.0	4.5	3.8	3.3	2.8	2.0	1.3	0.6	-0.4	-1.4	-2.7	-4.1	
EXPORTACIONES (KBPDC)																
330.5	367.7	572.4	595.6	692.8	703.0	702.8	702.6	702.1	703.4	703.3	703.2	703.3	703.2	703.2		
RESERVAS ENCONTRADAS																
MBBL	5911															
POZOS PERFORADOS																
No	1670															
Cálculo entrada pozos productores después de derribo contrato																
Años																
Barranca	1															
Exploracion	3															
Desarrollo	2															
PROGRAMA EXPLORATORIO																
Anual	0	90	110	98	79	79	79	79	79	79	79	79	79	79	79	
Asumido	0	90	201	299	401	596	673	712	819	918	1025					
Producido	0	26	31	28	29	30	30	30	30	30	30	29	29	29	29	
Producido Asumido	0	26	67	86	114	143	174	202	228	260	290					
CUENCAS SEDIMENTARIAS

VALLE INFERIOR

CESAR-RANCHERIA

VALLE MEDIO

CATATUMBO

CHOCO-PACIFICO

CORDILLERA

CAUCA-PATIA

LLANOS ORIENTALES

VALLE SUPERIOR

PUTUMAYO

CUENCAS CON PRODUCCION

CUENCAS SIN PRODUCCION

Fuente: ECOPETROL
ZONAS CARBONIFERAS

1. GUAJIRA
2. CESAR
3. CORDOBA
4. NORTE DE SANTANDER
5. SANTANDER
6. CUNDINAMARCA Y BOYACA
7. ANTIOQUIA
8. VALLE DEL CAUCA Y CAUCA
SIGLAS Y ABREVIATURAS

<table>
<thead>
<tr>
<th>Acronimo</th>
<th>Significado</th>
</tr>
</thead>
<tbody>
<tr>
<td>ACIPET</td>
<td>Asociación Colombiana de Ingenieros de Petróleos</td>
</tr>
<tr>
<td>ACP</td>
<td>Asociación Colombiana del Petróleo</td>
</tr>
<tr>
<td>ACPM</td>
<td>Aceite Combustible Para Motores (Diesel)</td>
</tr>
<tr>
<td>ANDI</td>
<td>Asociación Nacional de Industriales</td>
</tr>
<tr>
<td>ANL</td>
<td>Argonne National Laboratory</td>
</tr>
<tr>
<td>ARPEL</td>
<td>Asistencia Reciproca Petrolera Estatal Latinoamericana</td>
</tr>
<tr>
<td>BALANCE</td>
<td>Módulo de balance energético del programa ENPEP</td>
</tr>
<tr>
<td>BID</td>
<td>Banco Interamericano de Desarrollo</td>
</tr>
<tr>
<td>BOT</td>
<td>Build Operate and Transfer</td>
</tr>
<tr>
<td>CAME</td>
<td>Consejo Ambiental Minero Energético</td>
</tr>
<tr>
<td>CAR</td>
<td>Corporación Autónoma Regional</td>
</tr>
<tr>
<td>CARBOCOL</td>
<td>Carbones de Colombia S.A.</td>
</tr>
<tr>
<td>CECODES</td>
<td>Consejo Empresarial Colombiano para el Desarrollo Sostenible</td>
</tr>
<tr>
<td>CESU</td>
<td>Consejo de Educación Superior Universitaria</td>
</tr>
<tr>
<td>CH₄</td>
<td>Metano</td>
</tr>
<tr>
<td>CIB</td>
<td>Complejo Industrial de Barrancabermeja</td>
</tr>
<tr>
<td>CIER</td>
<td>Comisión de Integración Eléctrica Regional del Grupo Andino</td>
</tr>
<tr>
<td>CIMPA</td>
<td>Centro de Investigación para el Mejoramiento de la Industria</td>
</tr>
<tr>
<td>PANELERA</td>
<td>Panelera</td>
</tr>
<tr>
<td>CO</td>
<td>Monóxido de Carbono</td>
</tr>
<tr>
<td>CO₂</td>
<td>Dióxido de Carbono</td>
</tr>
<tr>
<td>COLCIENCIAS</td>
<td>Instituto Colombiano para el Fomento de la Ciencia y la Tecnología, Francisco Jose de Caldas</td>
</tr>
<tr>
<td>CONFIS</td>
<td>Consejo Superior de Política Fiscal</td>
</tr>
<tr>
<td>CONPES</td>
<td>Consejo Nacional de Política Económica y Social</td>
</tr>
<tr>
<td>CORASFALTOS</td>
<td>Corporación Nacional para la Investigación de Asfaltos</td>
</tr>
<tr>
<td>CORELCA</td>
<td>Corporación Eléctrica de la Costa Atlántica</td>
</tr>
<tr>
<td>CORPES</td>
<td>Consejo Regional de Política Económica y Social</td>
</tr>
<tr>
<td>CORPOICA</td>
<td>Corporación Colombiana de Investigación Agropecuaria</td>
</tr>
<tr>
<td>CREG</td>
<td>Comisión de Regulación de Energía y Gas</td>
</tr>
<tr>
<td>DAA</td>
<td>Diagnóstico Ambiental de Alternativas</td>
</tr>
<tr>
<td>DNP</td>
<td>Departamento Nacional de Planeación</td>
</tr>
<tr>
<td>DRI</td>
<td>Fondo de Cofinanciación para el Desarrollo Rural Integrado</td>
</tr>
<tr>
<td>ECOCARBON</td>
<td>Empresa Colombiana de Carbón</td>
</tr>
<tr>
<td>ECOGAS</td>
<td>Empresa Colombiana de Gas</td>
</tr>
<tr>
<td>ECOPETROL</td>
<td>Empresa Colombiana de Petroleos</td>
</tr>
<tr>
<td>EEB</td>
<td>Empresa de Energía de Bogotá</td>
</tr>
<tr>
<td>EEUU</td>
<td>Estados Unidos de Norteamérica</td>
</tr>
<tr>
<td>EIA</td>
<td>Estudio de Impacto Ambiental</td>
</tr>
<tr>
<td>ENPEP</td>
<td>Energy and Power Evaluation Program</td>
</tr>
<tr>
<td>EPA</td>
<td>Environmental Protection Agency</td>
</tr>
<tr>
<td>EPSA</td>
<td>Empresa de Energía del Pacífico S.A. E.S.P</td>
</tr>
</tbody>
</table>
SIGLAS Y ABREVIATURAS

<table>
<thead>
<tr>
<th>SIGLA</th>
<th>ABBREVIATURA</th>
<th>SIGNIFICADO</th>
</tr>
</thead>
<tbody>
<tr>
<td>EURCOLERG</td>
<td>Programa de Cooperación en el sector energético entre la Comisión de Comunidades europeas y el Gobierno Colombiano</td>
<td></td>
</tr>
<tr>
<td>FEDEPANELA</td>
<td>Federación Nacional de Productores de Panela</td>
<td></td>
</tr>
<tr>
<td>FEN</td>
<td>Financiera Energética Nacional</td>
<td></td>
</tr>
<tr>
<td>FEP</td>
<td>Fondo de Estabilización Petrolera</td>
<td></td>
</tr>
<tr>
<td>FINDETER</td>
<td>Financiera de Desarrollo Territorial</td>
<td></td>
</tr>
<tr>
<td>FNR</td>
<td>Fondo Nacional de Regalías</td>
<td></td>
</tr>
<tr>
<td>FONADE</td>
<td>Fondo Nacional de Proyectos de Desarrollo</td>
<td></td>
</tr>
<tr>
<td>FONAM</td>
<td>Fondo Nacional Ambiental</td>
<td></td>
</tr>
<tr>
<td>FONIC</td>
<td>Fondo Nacional de Investigaciones del Carbón</td>
<td></td>
</tr>
<tr>
<td>GEF</td>
<td>Global Environmental Facility</td>
<td></td>
</tr>
<tr>
<td>GLP</td>
<td>Gas Licuado de Petróleo</td>
<td></td>
</tr>
<tr>
<td>GNC</td>
<td>Gas Natural Comprimido</td>
<td></td>
</tr>
<tr>
<td>GTZ</td>
<td>Gessellschaft für Technische Zuzammenarbeit</td>
<td></td>
</tr>
<tr>
<td>IASE</td>
<td>Instituto para el Análisis de Sistemas Energéticos</td>
<td></td>
</tr>
<tr>
<td>ICEL</td>
<td>Instituto Colombiano de Energía Eléctrica</td>
<td></td>
</tr>
<tr>
<td>ICONTEC</td>
<td>Instituto Colombiano de Normas Técnicas</td>
<td></td>
</tr>
<tr>
<td>ICR</td>
<td>Incentivo de Capitalización Rural</td>
<td></td>
</tr>
<tr>
<td>ICP</td>
<td>Instituto Colombiano del Petróleo</td>
<td></td>
</tr>
<tr>
<td>I&D</td>
<td>Investigación y Desarrollo</td>
<td></td>
</tr>
<tr>
<td>IDEAM</td>
<td>Instituto de Hidrología, Meteorología y Estudios Ambientales</td>
<td></td>
</tr>
<tr>
<td>IEA</td>
<td>International Energy Agency/Organismo de la OCDE</td>
<td></td>
</tr>
<tr>
<td>IIF</td>
<td>Instituto de Fomento Industrial</td>
<td></td>
</tr>
<tr>
<td>IMPACTS</td>
<td>Módulo de cálculo de impactos del programa ENPEP</td>
<td></td>
</tr>
<tr>
<td>INEA</td>
<td>Instituto Nacional de Ciencias Nucleares y Energías Alternativas</td>
<td></td>
</tr>
<tr>
<td>INGEI</td>
<td>Instituto Nacional de Gases que producen Efecto Invernadero</td>
<td></td>
</tr>
<tr>
<td>INGEOMINAS</td>
<td>Instituto Nacional de Investigaciones en Geología, Minería y Química</td>
<td></td>
</tr>
<tr>
<td>IPC</td>
<td>Índice de Precios al Consumidor</td>
<td></td>
</tr>
<tr>
<td>IPCC</td>
<td>International Panel on Climate Change</td>
<td></td>
</tr>
<tr>
<td>ISA</td>
<td>Interconexión Eléctrica S.A. E.S.P.</td>
<td></td>
</tr>
<tr>
<td>MINERCOL</td>
<td>Empresa Nacional Minera Ltda.</td>
<td></td>
</tr>
<tr>
<td>MHCP</td>
<td>Ministerio de Hacienda y Crédito Público</td>
<td></td>
</tr>
<tr>
<td>MMA</td>
<td>Ministerio del Medio Ambiente</td>
<td></td>
</tr>
<tr>
<td>MME</td>
<td>Ministerio de Minas y Energía</td>
<td></td>
</tr>
<tr>
<td>NO\textsubscript{x}</td>
<td>Oxidos de Nitrógeno</td>
<td></td>
</tr>
<tr>
<td>OCDE</td>
<td>Organización para la Cooperación y Desarrollo Económico</td>
<td></td>
</tr>
<tr>
<td>OCENSA</td>
<td>Oleoducto Central S.A.</td>
<td></td>
</tr>
<tr>
<td>OIEA</td>
<td>Organización Internacional de Energía Atómica</td>
<td></td>
</tr>
<tr>
<td>ONUDI</td>
<td>Organismo de las Naciones Unidas para el Desarrollo Industrial</td>
<td></td>
</tr>
<tr>
<td>OPEP</td>
<td>Organización de Países Exportadores de Petróleo</td>
<td></td>
</tr>
<tr>
<td>PCH</td>
<td>Pequeña Central Hidroeléctrica</td>
<td></td>
</tr>
</tbody>
</table>
SIGLAS Y ABREVIATURAS

<table>
<thead>
<tr>
<th>SIGLA</th>
<th>Definición</th>
</tr>
</thead>
<tbody>
<tr>
<td>PEN</td>
<td>Plan Energético Nacional</td>
</tr>
<tr>
<td>PER</td>
<td>Plan de Energización Rural</td>
</tr>
<tr>
<td>PEZNI</td>
<td>Plan de Energización de Zonas no Interconectadas</td>
</tr>
<tr>
<td>PIB</td>
<td>Producto Interno Bruto</td>
</tr>
<tr>
<td>PMA</td>
<td>Plan de Manejo Ambiental</td>
</tr>
<tr>
<td>PNUD</td>
<td>Programa de las Naciones Unidas para el Desarrollo</td>
</tr>
<tr>
<td>SENA</td>
<td>Servicio Nacional de Aprendizaje</td>
</tr>
<tr>
<td>SIN</td>
<td>Sistema Interconectado Nacional</td>
</tr>
<tr>
<td>SINA</td>
<td>Sistema Nacional Ambiental</td>
</tr>
<tr>
<td>SNNCM</td>
<td>Sistema Nacional de Normalización, Certificación y Metrología</td>
</tr>
<tr>
<td>SO₅</td>
<td>Oxígeno de Azufre</td>
</tr>
<tr>
<td>SSPD</td>
<td>Superintendencia de Servicios Públicos Domiciliarios</td>
</tr>
<tr>
<td>STN</td>
<td>Sistema de Transmisión Nacional</td>
</tr>
<tr>
<td>TOC</td>
<td>Total Organic Compounds</td>
</tr>
<tr>
<td>UDECO</td>
<td>Unidad Departamental de Cofinanciación</td>
</tr>
<tr>
<td>UIME</td>
<td>Unidad de Información Minero Energética</td>
</tr>
<tr>
<td>UMATA</td>
<td>Unidad Municipal de Asistencia Técnica Agropecuaria</td>
</tr>
<tr>
<td>UPME</td>
<td>Unidad de Planeación Minero Energética</td>
</tr>
<tr>
<td>URE</td>
<td>Uso Racional de Energía</td>
</tr>
<tr>
<td>USAID</td>
<td>Agencia de los Estados Unidos para el Desarrollo Internacional</td>
</tr>
<tr>
<td>VPN</td>
<td>Valor Presente Neto</td>
</tr>
</tbody>
</table>
UNIDADES DE MEDIDA

Unidades básicas

<table>
<thead>
<tr>
<th>Unidad</th>
<th>Símbolo</th>
<th>Factor</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pies</td>
<td>p</td>
<td>1</td>
</tr>
<tr>
<td>Metro</td>
<td>m</td>
<td>0.001</td>
</tr>
<tr>
<td>Galón</td>
<td>gal</td>
<td>1</td>
</tr>
<tr>
<td>Litro</td>
<td>lt</td>
<td>0.001</td>
</tr>
<tr>
<td>Barnil</td>
<td>B</td>
<td>1</td>
</tr>
<tr>
<td>Tonelada métrica</td>
<td>t</td>
<td>0.001</td>
</tr>
<tr>
<td>Libra</td>
<td>lb</td>
<td>1</td>
</tr>
<tr>
<td>Gramo</td>
<td>g</td>
<td>0.1</td>
</tr>
<tr>
<td>Watio</td>
<td>W</td>
<td>1</td>
</tr>
<tr>
<td>Caloría</td>
<td>cal</td>
<td>0.001</td>
</tr>
<tr>
<td>Unidad Térmica Británica</td>
<td>BTU</td>
<td>1</td>
</tr>
<tr>
<td>Segundo</td>
<td>s</td>
<td>0.001</td>
</tr>
<tr>
<td>Hora</td>
<td>h</td>
<td>1</td>
</tr>
<tr>
<td>Día</td>
<td>d</td>
<td>0.1</td>
</tr>
<tr>
<td>Año</td>
<td>a</td>
<td>1</td>
</tr>
</tbody>
</table>

Múltiplos y submúltiplos

<table>
<thead>
<tr>
<th>Prefijo</th>
<th>Símbolo</th>
<th>Factor</th>
</tr>
</thead>
<tbody>
<tr>
<td>Milli</td>
<td>m</td>
<td>0.001</td>
</tr>
<tr>
<td>Centi</td>
<td>c</td>
<td>0.01</td>
</tr>
<tr>
<td>Deci</td>
<td>d</td>
<td>0.1</td>
</tr>
<tr>
<td>Kilo</td>
<td>k</td>
<td>1.000</td>
</tr>
<tr>
<td>Mega</td>
<td>M</td>
<td>1.000.000</td>
</tr>
<tr>
<td>Giga</td>
<td>G</td>
<td>1.000.000.000</td>
</tr>
<tr>
<td>Tera</td>
<td>T</td>
<td>1.000.000.000.000</td>
</tr>
</tbody>
</table>

Unidades compuestas

<table>
<thead>
<tr>
<th>Unidad</th>
<th>Símbolo</th>
<th>Definición</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pies cúbico</td>
<td>pc</td>
<td>Pies cúbico</td>
</tr>
<tr>
<td>Millones de pies cúbicos</td>
<td>Mpc</td>
<td>Millones de pies cúbicos</td>
</tr>
<tr>
<td>Giga pies cúbicos</td>
<td>Gpc</td>
<td>Giga pies cúbicos</td>
</tr>
<tr>
<td>Kilómetro</td>
<td>km</td>
<td>Kilómetro</td>
</tr>
<tr>
<td>Metro cúbico</td>
<td>mc</td>
<td>Metro cúbico</td>
</tr>
<tr>
<td>Miles de barriles</td>
<td>kB</td>
<td>Miles de barriles</td>
</tr>
<tr>
<td>Miles de barriles equivalentes de petróleo</td>
<td>kBEP</td>
<td>Miles de barriles equivalentes de petróleo</td>
</tr>
<tr>
<td>Tonelada equivalente de petróleo</td>
<td>tEP</td>
<td>Tonelada equivalente de petróleo</td>
</tr>
<tr>
<td>Millones de toneladas</td>
<td>Mt</td>
<td>Millones de toneladas</td>
</tr>
</tbody>
</table>
UNIDADES DE MEDIDA

kt = Miles de toneladas
kg = Kilogramos
kV = Kilovoltios
kW = Kilowatts
MW = Megawatts
kWh = Kilowatts hora
GWh = Gigawatts hora
kcal = Kilocaloría
MBTU = Millones de BTU
B/d = Barriles por día
B/a = Barriles por año

Equivalencias

1 m = 3.28 p
1 gal = 3.78 lt
1 B = 42 gal
1 kg = 2.22 lb
1 kWh = 860 kcal
1 BTU = 252 cal
1 tEP = 10^4 kcal
1 tEP = 7.33 BEP
1 kpc = 1 MBTU

Contenidos calóricos

Petróleo = 1.38 Tca/B
Fuel oil = 1.48 Tca/B
Gasolina motor = 1.22 Tca/B
Diesel = 1.38 Tca/B
Kerosene = 1.33 Tca/B
Crudo Castilla = 1.48 Tca/B
GLP = 0.95 Tca/B
Gas natural = 0.23 Tca/kpc
Carbón = 6.50 Tca/t
Leña = 3.60 Tca/t
Bagazo = 1.82 Tca/t
Electricidad = 0.86 Tca/kWh
Teracaloría = 100 Tep = 100 t de Carbón
= 1.16 GWh